版权说明 操作指南
首页 > 成果 > 详情

SAM2-DFBCNet: A Camouflaged Object Detection Network Based on the Heira Architecture of SAM2

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yuan, Cao;Liu, Libang;Li, Yaqin;Li, Jianxiang
通讯作者:
Li, JX
作者机构:
[Li, Yaqin; Yuan, Cao; Li, Jianxiang; Liu, Libang] Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430040, Peoples R China.
通讯机构:
[Li, JX ] W
Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430040, Peoples R China.
语种:
英文
关键词:
camouflaged object detection;contextual awareness;feature fusion;dynamic boundary refinement;image segmentation;SAM2
期刊:
Sensors
ISSN:
1424-8220
年:
2025
卷:
25
期:
14
页码:
4509-
基金类别:
Conceptualization, C.Y. and L.L.; Methodology, L.L.; Software, C.Y. and L.L.; Validation, Y.L.; Investigation, Y.L.; Data Curation, C.Y. and J.L.; Writing—Original Draft Preparation, C.Y. and L.L.; Writing—Review and Editing, Y.L. and J.L.; Visualization, J.L.; Project Administration, J.L. funding acquisition, J.L. All authors have read and agreed to the published version of the manuscript. This research was funded by Wuhan Polytechnic University (Grant NO. 2025RZ076).
机构署名:
本校为第一且通讯机构
院系归属:
数学与计算机学院
摘要:
Camouflaged Object Detection (COD) aims to segment objects that are highly integrated with their background, presenting significant challenges such as low contrast, complex textures, and blurred boundaries. Existing deep learning methods often struggle to achieve robust segmentation under these conditions. To address these limitations, this paper proposes a novel COD network, SAM2-DFBCNet, built upon the SAM2 Hiera architecture. Our network incorporates three key modules: (1) the Camouflage-Aware Context Enhancement Module (CACEM), which fuses ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com