作者机构:
[Quan, Fengjiao; Xu, Pengfei; Chen, Xiaolan; Shen, Wenjuan; He, Yun; Li, Jianfen] College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China;[Jia, Falong] College of Chemistry, Central China Normal University, Wuhan 430079, China;[Zhan, Guangming] School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
通讯机构:
[Falong Jia] C;College of Chemistry, Central China Normal University, Wuhan 430079, China
摘要:
Nitrate (NO3–) is a widespread pollutant in high-salt wastewater and causes serious harm to human health. Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method, the development of low-cost electro-catalysts is still challenging. In this work, a phosphate modified iron (P-Fe) cathode was prepared for electrochemical removal of nitrate in high-salt wastewater. The phosphate modification greatly improved the activity of iron, and the removal rate of nitrate on P-Fe was three times higher than that on Fe electrode. Further experiments and density functional theory (DFT) calculations demonstrated that the modification of phosphoric acid improved the stability and the activity of the zero-valent iron electrode effectively for NO3– removal. The nitrate was firstly electrochemically reduced to ammonium, and then reacted with the anodic generated hypochlorite to N2. In this study, a strategy was developed to improve the activity and stability of metal electrode for NO3– removal, which opened up a new field for the efficient reduction of NO3– removal by metal electrode materials.
期刊:
Journal of Tribology,2025年147(2):024602 ISSN:0742-4787
通讯作者:
Jianfang Liu
作者机构:
[Jianfang Liu] School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430030, China;[Dan Jia] State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Materials Protection, Wuhan, Hubei 430030 China;[Rongrong Zhang; Shuai Peng; Ting Liu; Sicheng Yang; Chenglingzi Yi; Yaoyun Zhang; Qing Yang] School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
通讯机构:
[Jianfang Liu] S;School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430030, China
摘要:
With increasing environmental awareness, the demand for bio-based lubricants is escalating, positioning vegetable oils as viable alternatives to traditional industrial lubricants. This study employs comprehensive factor scores to assess and rank the antiwear property and oxidation stability of 53 vegetable oils with diverse fatty acid compositions. Xanthoceras sorbifolia Bunge oil (XSBO), derived from woody oil plants renowned for their economic and environmental benefits, emerges as a standout candidate following the exclusion of previously reported lubricant types. Comparative evaluations via four-ball friction tests and pressurized differential scanning calorimeter (PDSC) analyses reveal that XSBO’s antioxidant property is slightly inferior to the mineral oil, poly-alpha-olefin, and synthetic ester. However, XSBO exhibits superior tribological property and viscosity characteristics. Supported by computational modeling and laboratory validation, XSBO demonstrates significant promise as a bio-based lubricant, advocating its potential as an ideal replacement for conventional base oils.
作者:
Richard William McLaughlin;YaLu Wang;ShuYa Zhang;HaiXia Xie;XiaoLing Wan;...
期刊:
Antonie van Leeuwenhoek,2025年118(1):1-12 ISSN:0003-6072
通讯作者:
JinSong Zheng
作者机构:
[Richard William McLaughlin; YaLu Wang; Hui Liu; YuJiang Hao; ChaoQun Wang; JinSong Zheng] Innovation Research Center for Aquatic Mammals;Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China;School of Liberal Arts & Sciences, Gateway Technical College, Kenosha, USA;University of Chinese Academy of Sciences, Beijing, China;[ShuYa Zhang; HaiXia Xie] State Key Laboratory of Freshwater Ecology and Biotechnology
通讯机构:
[JinSong Zheng] I;Innovation Research Center for Aquatic Mammals;Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
摘要:
Proteus faecis is a gram-negative facultative anaerobic rod-shaped bacterium capable of swarming motility. It has been isolated from numerous sources such as humans, animals, and refuse and is considered potentially pathogenic towards humans. In this study, bacteria were isolated from the blowhole of a Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) living in captivity in China. One bacterium, P. faecis porpoise, was isolated and whole genome sequencing done. Biofilm formation, motility and antimicrobial resistance were also investigated. To find putative virulence factors, the genome of P. faecis strain porpoise was compared to the genomic sequences of eight other P. faecis isolates using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (
https://www.bv-brc.org/
). The goal of this study was to initially characterize the pathogenicity of this bacterium isolated from a cetacean species using both pathogenomics and conventional approaches.
作者机构:
[Jiabao Gong; Wenhan Xu; Changqing Zhang; Qingyue Zhu; Haizhi Zhang] College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China;Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, China;Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan, China;[Xinguang Qin; Gang Liu] College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China<&wdkj&>Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, China<&wdkj&>Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan, China
通讯机构:
[Gang Liu] C;College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China<&wdkj&>Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, China<&wdkj&>Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan, China
摘要:
Wheat starch was modified through octenyl succinic anhydride (OSA) esterification combined with enzymatic hydrolysis using glucoamylase and α-amylase to produce four modified starches, namely, OSA-modified starch (OSAS), enzyme-modified starch (EMS), OSA-enzyme-modified starch (OEMS), and enzyme-OSA-modified starch (EOMS). The effects of modification methods on the physicochemical properties and internal structure of starches were investigated. The effects of starch modification contents (2%, 4%, and 6%) on the functional properties of wheat dough were also studied. The internal structure of the modified starches was analyzed through Fourier transform infrared spectroscopy and scanning electron microscopy. Results showed that starch molecules were successfully integrated in OSA, and glycosylase action was inhibited. Differences in the physicochemical properties of the modified starches were analyzed from the perspective of intermolecular hydrogen bonds and other molecular forces. The dough added with 6% OEMS showed significantly reduced water fluidity and improved viscoelasticity. This work provides a new way to optimize the storage stability and processing performance of dough.
期刊:
Applied Mathematics and Computation,2025年484:128994 ISSN:0096-3003
通讯作者:
Jiemei Zhao
作者机构:
[Yi Shen; Jiemei Zhao] School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China;[Liqi Yu] Mathematics Department, East University of Heilongjiang, Harbin 150066, China
通讯机构:
[Jiemei Zhao] S;School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
摘要:
This study is concerned with reachable set bounding of delayed second-order memristive neural networks (SMNNs) with bounded input disturbances. By applying an analytic method, some inequality techniques and an adaptive control strategy, a sufficient condition of reachable set estimation criterion is derived to guarantee that the states of delayed SMNNs are bounded by a compact ellipsoid. A non-reduced order method is employed to investigate the reachable set bounding problem instead of the reduced order method by variable substitution. In addition, the proposed result is presented in algebraic form, which is easy to test. Finally, a simulation is performed to demonstrate the validity of the proposed algorithm.
作者机构:
[Yu Zhou; Nan Wang; Lihua Zhu] College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China;College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China;[Shuangshuang Huang] School of Physics and Technology, Center for Electron Microscopy, Wuhan University, Wuhan, China;[Xiaobo Wang] College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China<&wdkj&>College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
通讯机构:
[Xiaobo Wang; Lihua Zhu] C;College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China<&wdkj&>College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China<&wdkj&>College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
摘要:
An efficient catalytic system was developed to remove various organic pollutants by simultaneously using low-level cobalt ions, calcium carbonate micro-particles and peroxymonosulfate (PMS). A simple base-induced precipitation was used to successfully loaded Co-centered reactive sites onto the surface of CaCO3 microparticles. Under optimal conditions at 25 °C, 10 mg/L methylene blue (MB) could be completely degraded within 10 min with 480 µg/L Co2+, 0.4 g/L CaCO3 microparticles (or 0.4 g/L Co@CaCO3) and 0.1 g/L PMS. The MB degradation followed the pseudo first order kinetics with a rate constant of 0.583 min−1, being 8.3, 11.5 and 53.0 times that by using Co-OH (0.07 min−1), Co2+ (0.044 min−1) and CaCO3 (0.011 min−1) as the catalyst, respectively. It was confirmed that there was a synergistic effect in the catalytic activity between Co species and the CaCO3 particles but the major contributor was the highly dispersed Co species. When Co2+-containing simulated electroplating wastewater was used as the Co2+ source, not only the added MB was also completely degraded within 5 min in this catalytic system, but also the coexisting heavy metal ions were substantially removed. The presently developed method was applied to simultaneously treat organic wastewater and heavy metals wastewater. The present method was also successfully used to efficiently degrade other organic pollutants including bisphenol A, sulfamethoxazole, rhodamine B, tetrabromobisphenol A, ofloxacin and benzoic acid. A catalytic mechanism was proposed for the PMS activation by Co@CaCO3. The surface of CaCO3 particles favors the adsorption of Co2+. More importantly, the surface of CaCO3 particles provides plentiful surface -OH and -CO32+, and these surface groups complex with Co2+ to produce more catalytically active species such as surface [CoOH]−, resulting in rapid Co2+/Co3+ cycling and electron transfer. These interactions cause the observed synergistic effect between Co species and CaCO3 particles in PMS activation. Due to good cycle stability, strong anti-interference ability and wide universality, the new method will have broad application prospects.
作者机构:
School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China;National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, PR China;[Xu Chen; Hongxia Xiang; Yong Liang; Jiangling He; Rongyu Chen; Zhenzhou Zhu; Shuyi Li; Xiang Chen; Shuiyuan Cheng] School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China<&wdkj&>National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, PR China
通讯机构:
[Xu Chen] S;School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China<&wdkj&>National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, PR China
摘要:
Highly stable and multifunctional intelligent films were fabricated using a combination of grape skin anthocyanin, polyvinyl alcohol, chitosan and selenopeptide, and the influence of selenopeptide concentration on films' properties and their effectiveness in strawberry preservation and freshness monitoring was investigated. The results showed that the incorporated selenopeptide could interact with polyvinyl alcohol and grape skin anthocyanin via hydrogen bonding, improving the hydrophobic, UV-blocking, and mechanical characteristics of the films. In particular, the introduction of 0.4% selenopeptide into the film notably boosted its tensile strength from 11.91 MPa to 26.91 MPa. More importantly, the films incorporated with selenopeptide showed decent antioxidant and antibacterial properties, along with high storage stability and thermal stability. Adding 0.4% selenopeptide to the film can increase the shelf life of strawberries at 25 °C by 3 days, and a distinct color change showing fair good linear relationship with the freshness indexes of the strawberry (hardness and weight loss rate) was observed. Overall, anthocyanin-infused films combined with selenopeptide have demonstrated promising results in preserving food and monitoring freshness, opening up new opportunities for preparing stable, smart and active films.
摘要:
Camellia seed oil (CSO), as a nutrient-rich edible oil, is widely used in foods, cosmetics, and other fields. In this work, the extraction, deacidification, decolorization, and deodorization processes of CSO were respectively optimized for meeting injectable oil standards. The results showed that the CSO extraction rate reached the highest level of 94% at optimized conditions (ultrasonic time, 31.2 min; reaction pH, 9.2; and reaction time, 3.5 h). The physicochemical indexes of CSO and 10 other vegetable oils were evaluated by the principal component analysis method, and the overall scores of vegetable oils were ranked as camellia seed oil > olive oil > rice oil > peanut oil > sesame oil > corn oil > soybean oil > sunflower oil > rapeseed oil > walnut oil > flaxseed oil. The physicochemical indicators of CSO were the most ideal among the 11 vegetable oils, which means that CSO is suitable as an injectable oil. Through the optimized processes of the deacidification, decolorization, and deodorization, the CSO acid value was reduced to 0.0515 mg KOH/g, the decolorization rate reached a maximum of 93.86%, and the OD(430) was 0.015, meeting the requirement (≤0.045 of OD(430)) of injectable oil. After the deodorization process, these parameters of the refractive index, acid value, saponification value, iodine value, absorbance, unsaponifiable, moisture and volatiles, fatty acid composition, and heavy metal limits all met the pharmacopoeia standards of injectable oil in many countries and regions. The possibility of CSO as an injectable oil was first verified through refining-process optimization and nutritional index analysis, providing an important technical reference for the high-value utilization of vegetable oil.
摘要:
Abstract During food production, food processing, and supply chain, large amounts of food byproducts are generated and thrown away as waste, which to a great extent brings about adverse consequences on the environment and economic development. The sweet potato (Ipomoea batatas L.) is cultivated and consumed in many countries. Sweet potato peels (SPPs) are the main byproducts generated by the tuber processing. These residues contain abundant nutrition elements, bioactive compounds, and other high value‐added substances; therefore, the reutilization of SPP holds significance in improving their overall added value. SPPs contain abundant phenolic compounds and carotenoids, which might contribute significantly to their nutraceutical properties, including antioxidant, antimicrobial, anticancer, prebiotic, anti‐inflammatory, wound‐healing, and lipid‐lowering effects. It has been demonstrated that SPP could be promisingly revalorized into food industry, including: (1) applications in diverse food products; (2) applications in food packaging; and (3) applications in the recovery of pectin and cellulose nanocrystals. Furthermore, SPP could be used as promising feedstocks for the bioconversion of diverse value‐added bioproducts through biological processing.
通讯机构:
[Tian, YQ ] J;Jiangnan Univ, State Key Lab Food Sci & Resources, Wuxi 214122, Peoples R China.
关键词:
High internal phase emulsion;Quinoa starch;Droplet properties;Interface;Catalytic performance
摘要:
Pickering high internal phase emulsion has emerged as potential platforms for biocatalytic reactions. Herein, native quinoa starch was used as the emulsifier to form a stable Pickering HIPE with an internal phase up to 80 %. The catalytic performance of lipase loaded in HIPE was evaluated for the enzymatic hydrolysis of hexyl hexanoate. Compared with the typical Pickering emulsion, biphasic, and monophasic systems, the Pickering HIPE system displayed higher conversion (83.54 % at 1440 min) and specific enzyme activity (1.41 U/mg), thus emphasizing the crucial role of microdroplets and large interface area created by both the starch particles and high internal phase volume. Subsequently, HIPEs with different starch concentrations were fabricated to further understand the catalysis behavior happening at compartmentalized microdroplets and interfaces. The microstructural, interfacial, and rheological properties of the HIPEs were systematically determined to explain the correlation between emulsion properties and catalytic efficiency. High starch concentration reduced the droplet size and increased the interfacial area, thus shortening the mass transfer distance and enlarging the reaction area. Meanwhile, the increased surface coverage and viscosity led to poor accessibility and limited mass movement. This trade-off made the maximum conversion be obtained at 2 wt% concentration. The study provides novel information about the role of emulsion droplets in the catalytic performance of lipase in starch-based HIPE.
摘要:
Total starch granule-associated proteins (tGAP), including granule-channel (GCP) and granule-surface proteins (GSP), alter the physicochemical properties of starches. Quinoa starch (QS) acts as an effective emulsifier in Pickering emulsion. However, the correlation between the tGAP and the emulsifying capacity of QS at different scales remains unclear. Herein, GCP and tGAP were selectively removed from QS, namely QS-C and QS-A. Results indicated that the loss of tGAP increased the water permeability and hydrophilicity of the starch particles. Mesoscopically, removing tGAP decreased the diffusion rate and interfacial viscous modulus. Particularly, GSP had a more profound impact on the interfacial modulus than GCP. Microscopically and macroscopically, the loss of tGAP endowed QS with weakened emulsifying ability in terms of emulsions with larger droplet size and diminished rheological properties. Collectively, this work demonstrated that tGAP played an important role in the structural and interfacial properties of QS molecules and the stability of QS-stabilized emulsions.
摘要:
Designing efficient nanozyme to construct rapid analytical method for tannic acid (TA) content control has significant influence in food science area. Herein, by one-step self -assembly between Fe3+ and 2, 3, 6, 7, 10, 11hexahydroxytriphenylene (HHTP), an amorphous nanomaterial (Fe-HHTP) was synthesized and fully characterized by TEM, AFM, XRD, EDS element mapping and XPS. Then, its peroxidase-like activity was explored by using H2O2 and 3, 3 ', 5, 5 '- tetramethylbenzidine (TMB) as typical substrates. Due to the inhibition of TA on FeHHTP catalyzed chromogenic reaction, a rapid and accurate colorimetric method for TA detection was constructed. After thorough verification, the method featured with merits of low limit of quantitation (0.50 mu mol/L), good linear range (0.5-100.0 mu mol/L) and high accuracy (recovery rate of 95.85-98.06%). From mechanism study, the inhibition of TA on chromogenic reaction might be resulted from its antioxidation ability and the formation of Fe3+-TA complex. Finally, this method was applied to visual detection of TA content in different teas and red wines.
关键词:
Accelerated oxidation;Emulsion stability;Glycosylation;Lipid storage;Whey protein isolate
摘要:
Glycosylated protein was obtained by the reaction of whey protein isolate(WPI) with inulin of different polymerization degrees and was used to stabilize a pomegranate seed oil emulsion. The physicochemical and antioxidative properties of the emulsions were assessed, and the impacts of accelerated oxidation on pomegranate seed oil were examined. The interfacial tension of WPI and short-chain inulin (SCI)-glycosylated conjugate (WPI-SCI) gradually decreased with increasing glycosylation reaction time. Emulsions stabilized by WPI-SCI (72h) were the most stable, with a thick interfacial film on the surface of the droplets. After accelerated oxidation for 72h, WPI-SCI inhibited the oxidation of oil in the emulsion. GC-IMS results showed that the production of harmful volatile components in oil was inhibited, and the peroxide strength was less than 30mmol/kg oil. This study contributes to understanding of stable storage of lipids.
摘要:
Enzymatically prepared aromatic oils commonly have high purity and aroma quality. However, amino acid type and content vary greatly according to the type of oil, which impacts overall aroma and quality. In this study, the effects of lysine (Lys), arginine (Arg), proline (Pro), and glutamic (Glu) acid on physicochemical indices, nutrients, hazardous substances, fatty acid composition, and flavor during fragrant rapeseed oil (FRO) enzymatic preparation were investigated using the Maillard reaction (MR). In the lysine-treated group, the unsaturated fatty acids (93.16 %), alpha-tocopherol (183.06 mg/kg), gamma-tocopherol (404.37 mg/kg), and delta-tocopherol (12.69 mg/kg) contents were the highest, whereas the acid value (1.27 mg/g) and moisture (0.10 %) and benzo[a]pyrene (1.45 mu g/kg) contents were the lowest. Sensory evaluation showed that lysine effectively enhanced FRO flavor by enhancing the nutty/toasted flavor (4.80 scores). Principle component analysis (PCA) showed that the nutty/ toasted flavor correlated mainly with 2,6-dimethylpyrazine, 2,5-dimethyl-pyrazine, 2-methyl-pyrazine, and trimethylpyrazine, nutty/toasted flavor strength increased with pyrazine content, which were the highest in the lysine group (24.02 mu g/g). This study provides a guide for FRO preparation by adding external MR prerequisites.
摘要:
Our previous study identified round scad neuroprotective peptides with different characteristics. However, the intrinsic relationship between their structure and bioactivity, as well as their bioavailability, remains unclear. The aim of this study is to elucidate the bioavailability of these peptides and their structure-activity relationship against neuroinflammation. Results showed that the SR and WCP peptides were resistant to gastrointestinal digestion. Additionally, peptides SR, WCP, and WCPF could transport Caco-2 monolayers as intact peptides. The permeability coefficients (P(app)) of SR, WCP, and WCPF in Caco-2 monolayer were (1.53 ± 0.01) × 10(-5), (2.12 ± 0.01) × 10(-5), and (8.86 ± 0.03) × 10(-7) cm/s, respectively. Peptides SR, WCP, and WCPF, as promising inhibitors of JAK2 and STAT3, could attenuate the levels of pro-inflammatory cytokines and regulate the NFκB and JAK2/STAT3 signaling pathway in LPS-treated BV-2 cells. WCPF exerted the highest anti-inflammatory activity. Moreover, bioinformatics, molecular docking, and quantum chemistry studies indicated that the bioactivity of SR was attributed to Arg, whereas those of WCP and WCPF were attributed to Trp. This study supports the application of round-scad peptides and deepens the understanding of the structure-activity relationship of neuroprotective peptides.
作者机构:
[Liu, Xiaorong; Fu, Yang; Wang, Xuedong; Zhang, Yuting; Wang, XD] Wuhan Polytech Univ, Minist Educ, Key Lab Deep Proc Major Grain & Oil, Hubei Key Lab Proc & Transformat Agr Prod, Wuhan 430023, Peoples R China.;[Yu, Junbo] Chinese Cereals & Oils Assoc, Beijing 100032, Peoples R China.;[Yan, Dongfang; Liu, Xiangjun; Li, Ku] Natl Key Lab Agr Microbiol, Wuhan 430070, Peoples R China.;[Zhou, Jianjun; Barba, Francisco J.; Ferrer, Emlia] Univ Valencia, Fac Pharm, Nutr Food Sci & Toxicol Dept, Res Grp Innovat Technol Sustainable Food ALISOST, Avda Vicent Andres Estelles S-N, Valencia 46100, Spain.
通讯机构:
[Zhou, JJ ] U;[Wang, XD ] W;Wuhan Polytech Univ, Minist Educ, Key Lab Deep Proc Major Grain & Oil, Hubei Key Lab Proc & Transformat Agr Prod, Wuhan 430023, Peoples R China.;Univ Valencia, Fac Pharm, Nutr Food Sci & Toxicol Dept, Res Grp Innovat Technol Sustainable Food ALISOST, Avda Vicent Andres Estelles S-N, Valencia 46100, Spain.
关键词:
wheat oligopeptide;bakery goods;starch crystallization;retrogradation properties;microstructure;storage process
摘要:
<jats:p>Delaying the deterioration of bakery goods is necessary in the food industry. The objective of this study was to determine the effects of wheat oligopeptide (WOP) on the qualities of bread rolls. The effects of WOP on the baking properties, moisture content, and starch crystallization of rolls during the storage process were investigated in this study. The results showed that WOP effectively improved the degree of gluten cross-linking, thereby improving the specific volume and the internal structure of rolls. The FTIR and XRD results showed that the addition of WOP hindered the formation of the starch double helix structure and decreased its relative crystallinity. The DSC results revealed a decrease in the enthalpy change (ΔH) from 0.812 to 0.608 J/g after 7 days of storage with 1.0% WOP addition, further indicating that WOP reduced the availability of water for crystal lattice formation and hindered the rearrangement of starch molecules. The addition of WOP also improved the microstructure of the rolls that were observed using SEM analysis. In summary, WOP is expected to be an effective natural additive to inhibit starch staling and provide new insights into starchy food products.</jats:p>