版权说明 操作指南
首页 > 成果 > 详情

Enhanced Wind Power Forecasting Using a Hybrid Multi-Strategy Coati Optimization Algorithm and Backpropagation Neural Network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yang, Hua;Shu, Zhan;Li, Zhonger
通讯作者:
Yang, H
作者机构:
[Li, Zhonger; Yang, Hua; Yang, H; Shu, Zhan] Wuhan Polytech Univ, Coll Math & Comp Sci, Wuhan 430023, Peoples R China.
通讯机构:
[Yang, H ] W
Wuhan Polytech Univ, Coll Math & Comp Sci, Wuhan 430023, Peoples R China.
语种:
英文
关键词:
BP neural network;hybrid optimization model;metaheuristic algorithm;renewable energy integration;wind power prediction
期刊:
Sensors
ISSN:
1424-8220
年:
2025
卷:
25
期:
8
基金类别:
National Natural Science Foundation of China (NSFC-CAAC); Ministry of Education Industry-University Cooperation Education Project [231106627155856]; Hubei Province Graduate Workstation School-Enterprise Cooperation Project [whpu-2021-kj-762]; Research and Application of Multimodal Algorithms [whpu-2024-kj-4582, whpu-2024-kj-4639, 01003009]; Hubei Provincial Natural Science Foundation [2025AFC122]; [U1833119]
机构署名:
本校为第一且通讯机构
院系归属:
数学与计算机学院
摘要:
The integration of intermittent wind power into modern grids necessitates highly accurate forecasting models to ensure stability and efficiency. To address the limitations of traditional backpropagation (BP) neural networks, such as slow convergence and susceptibility to local optima, this study proposes a novel hybrid framework: the Multi-Strategy Coati Optimization Algorithm (SZCOA)-optimized BP neural network (SZCOA-BP). The SZCOA integrates three innovative strategies-a population position update mechanism for global exploration, an olfacto...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com