版权说明 操作指南
首页 > 成果 > 详情

Deep learning techniques for in-crop weed recognition in large-scale grain production systems: a review

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Hu, Kun;Wang, Zhiyong;Coleman, Guy;Bender, Asher;Yao, Tingting;...
通讯作者:
Hu, K
作者机构:
[Hu, Kun; Hu, K; Wang, Zhiyong] Univ Sydney, Sch Comp Sci, Camperdown, NSW 2006, Australia.
[Coleman, Guy; Walsh, Michael] Univ Sydney, Sch Life & Environm Sci, Camperdown, NSW 2006, Australia.
[Bender, Asher] Univ Sydney, Australian Ctr Field Robot, Chippendale, NSW 2008, Australia.
[Yao, Tingting] Dalian Maritime Univ, Coll Informat Sci & Technol, Dalian 116000, Liaoning, Peoples R China.
[Zeng, Shan] Wuhan Polytech Univ, Coll Math & Comp Sci, Wuhan 430023, Hubei, Peoples R China.
通讯机构:
[Hu, K ] U
Univ Sydney, Sch Comp Sci, Camperdown, NSW 2006, Australia.
语种:
英文
关键词:
Weed management;Precision agriculture;Deep learning
期刊:
Precision Agriculture
ISSN:
1385-2256
年:
2024
卷:
25
期:
1
页码:
1-29
基金类别:
Open Access funding enabled and organized by CAUL and its Member Institutions. This work was supported by the GRDC (Grains Research and Development Corporation) [Grant Number 9177493].
机构署名:
本校为其他机构
院系归属:
数学与计算机学院
摘要:
Weeds are a significant threat to agricultural productivity and the environment. The increasing demand for sustainable weed control practices has driven innovative developments in alternative weed control technologies aimed at reducing the reliance on herbicides. The barrier to adoption of these technologies for selective in-crop use is availability of suitably effective weed recognition. With the great success of deep learning in various vision tasks, many promising image-based weed detection algorithms have been developed. This paper reviews recent developments of deep learning techniques in...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com