版权说明 操作指南
首页 > 成果 > 详情

Soybean Weed Detection Based on RT-DETR with Enhanced Multiscale Channel Features

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yang, Hua;Lyu, Yanjie;Jiang, Yunpeng;Jiang, Feng;Deng, Taiyong;...
通讯作者:
Yang, H
作者机构:
[Guo, Junying; Qiu, Yuanhao; Yang, Hua; Yang, H; Yu, Lihao; Lyu, Yanjie; Meng, Zhaoqi; Xue, Hao] Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430040, Peoples R China.
[Jiang, Yunpeng] BiSiCloud Wuhan Informat Technol Co Ltd, Wuhan 430024, Peoples R China.
[Jiang, Feng] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R China.
[Deng, Taiyong] Zhengzhou Xinsiqi Technol Co Ltd, Zhengzhou 450046, Peoples R China.
通讯机构:
[Yang, H ] W
Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430040, Peoples R China.
语种:
英文
关键词:
RT-DETR;weed detection;FasterNet;EA attention;feature fusion
期刊:
Applied Sciences-Basel
ISSN:
2076-3417
年:
2025
卷:
15
期:
9
基金类别:
National Natural Science Foundation of China; Humanities and Social Science Research Foundation of Ministry of Education of China [22YJAZH038]; Ministry of Education Industry-University Cooperation Education Project [231106627155856, 01003009]; Hubei Provincial Natural Science Foundation [2025AFC122]; School Enterprise Cooperation Project; [U1833119]
机构署名:
本校为第一且通讯机构
院系归属:
数学与计算机学院
摘要:
To solve the missed and wrong detection problems of the object detection model in identifying soybean companion weeds, this paper proposes an enhanced multi-scale channel feature model based on RT-DETR (EMCF-RTDETR). First, we designed a lightweight hybrid-channel feature extraction backbone network, which consists of a CGF-Block module and a FasterNet-Block module working together, aiming to reduce the amount of computation and the number of parameters while improving the efficiency of feature extraction. Second, we constructed the EA-AIFI module. This module enhances the extraction of detail...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com