版权说明 操作指南
首页 > 成果 > 详情

TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Fang, Wenhui;Chen, Weizhen
通讯作者:
Chen, WZ
作者机构:
[Fang, Wenhui; Chen, Weizhen] Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan 430048, Peoples R China.
通讯机构:
[Chen, WZ ] W
Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan 430048, Peoples R China.
语种:
英文
关键词:
YOLOv8n;computer vision;distributed shift convolution;intelligence;tea buds
期刊:
Sensors
ISSN:
1424-8220
年:
2025
卷:
25
期:
2
基金类别:
Hubei Provincial Natural Science Foundation of China; Science Research Foundation of the Education Department of Hubei Province of China [B2020061]; [2022CFB449]
机构署名:
本校为第一且通讯机构
院系归属:
电气与电子工程学院
摘要:
Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry upgrades and enhances economic benefits. To solve the problem of the high computational complexity of deep learning detection models, we developed the Tea Bud DSCF-YOLOv8n (TBF-YOLOv8n)lightweight detection model. Improvement of the Cross Stage Partial Bottleneck Module with Two Convolutions(C2f) module via efficient Distributed Shift Convolution (DSConv) yields the C2f module with DSConv(DSCf)module, which reduces the model's size. Additi...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com