Existing research in metasurface design was based on trial-and-error high-intensity iterations and requires deep acoustic expertise from the researcher, which severely hampered the development of the metasurface field. Using deep learning enabled the fast and accurate design of hypersurfaces. Based on this, in this paper, an integrated learning approach was first utilized to construct a model of the forward mapping relationship between the hypersurface physical structure parameters and the acoustic field, which was intended to be used for data enhancement. Then a dual-feature fusion model (DFC...