版权说明 操作指南
首页 > 成果 > 详情

A New Classification Method for Stored Grain Insect Infestation Using KIII and SVM Based Electronic Nose

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Jie Li;Dong Lai Xu
通讯作者:
Li, J.(lijie_whpu@foxmail.com)
作者机构:
[Li J.] School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, China
[Xu D.L.] School of Science and Engineering, Teesside University, Middlesbrough, TS1 3BA, United Kingdom
通讯机构:
[Li, J.] S
School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, China
语种:
英文
关键词:
Olfactory neural network;Pattern recognition;Stored-grain insect;Support vector machine
期刊:
Advanced Materials Research
ISSN:
1022-6680
年:
2014
卷:
1006-1007
页码:
870-873
会议名称:
4th International Conference on Advanced Engineering Materials and Technology, AEMT 2014
会议时间:
14 June 2014 through 15 June 2014
出版者:
Trans Tech Publications Ltd
ISBN:
9783038352075
机构署名:
本校为第一且通讯机构
院系归属:
电气与电子工程学院
摘要:
Insect infestation is a common problem for stored grain. In this paper, a novel pattern recognition approach combining an olfactory neural network entitled KIII with support vector machine (SVM) is proposed and used in conjunction with an electronic nose to generate recognition models. Using this approach, feature vectors are firstly processed by KIII model which stimulates information processing function of olfactory bulb, and then classified by SVM. Through optimization of SVM model parameters, the data are mapped into high dimension space and the stored wheat samples with different degrees ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com