版权说明 操作指南
首页 > 成果 > 详情

New method and application of dynamic identification in well logging lithology

认领
导出
Link by 中国知网学术期刊 Link by 维普学术期刊 Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
郭健;龚静;余飞
通讯作者:
Guo, J.(guojianxh@163.com)
作者机构:
[郭健; 龚静] College of Civil Engineering, Wuhan Polytechnic University, Wuhan 430023, China
[余飞] Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
通讯机构:
College of Civil Engineering, Wuhan Polytechnic University, China
语种:
中文
关键词:
逃逸微粒群算法;测井参数;岩性识别;Elman神经网络
关键词(英文):
Dynamic identification;Elman neural network;ENN (Elman neural network);Geological research;Hybrid algorithms;Identification systems;Lithofacies;Lithology identification;Rock classification;Sedimentary micro-facies;Curve fitting;Identification (control systems);Lithology;Minerals;Neural networks;Ore deposit geology;Ore deposits;Particle swarm optimization (PSO);Sedimentary rocks;Well pressure;Well logging
期刊:
陆军工程大学学报
ISSN:
1009-3443
年:
2009
卷:
10
期:
5
页码:
452-455
基金类别:
基金项目:住房和城乡建设部2009年科学技术项目计划资助(2009-K3-16).
机构署名:
本校为第一且通讯机构
院系归属:
土木工程与建筑学院
摘要:
由于岩性测井曲线分布具有模糊性,在对岩性进行划分时会出现较大的困难。为了准确分析测井响应曲线,将逃逸微粒群算法与E lm an反馈神经网络进行有机结合,形成了EPSO-NN混合算法,并构建了基于"EPSO-NN"的非线性动态识别系统,用于测井岩性的自适应识别。工程实例结果表明,该系统在岩性识别上是可行的、有效的,同样也完全可以用于岩相、沉积微相识别、矿床预测及矿物岩石分类地质方面的研究。
摘要(英文):
For the fuzzy distribution of well logging curves, it is very difficult to partition lithology. In order to analyze the well logging response curves in the process of lithology identification, escape particle swarm optimization (EPSO) was proposed to be combined with Elman neural network (ENN), and EPSO-NN hybrid algorithm was produced. The nonlinear dynamical identification system was constructed based on EPSO-NN. The system was employed to adaptively identify the well logging lithology. The results of the engineering cases indicate that this system is feasible and effective in the lithology ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com