版权说明 操作指南
首页 > 成果 > 详情

Low-rank based infrared spectral feature extraction framework for quantitative analysis

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Mou, Yi*;Zhou, Long*;Huang, Hailin;Chen, Weizhen;Fan, Jijun
通讯作者:
Mou, Yi;Zhou, Long
作者机构:
[Zhou, Long; Mou, Yi; Zhou, L; Fan, Jijun; Huang, Hailin; Chen, Weizhen] Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan 430023, Hubei, Peoples R China.
通讯机构:
[Mou, Y; Zhou, L] W
Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan 430023, Hubei, Peoples R China.
语种:
英文
关键词:
Approximation theory;Chemical analysis;Extraction;Feature extraction;Learning systems;Singular value decomposition;Accuracy Improvement;Extraction procedure;Feature extraction methods;Low rank approximations;Low-rank;Nuclear norm;Quantitative analysis model;State-of-the-art methods;Spectrum analysis
期刊:
Optik
ISSN:
0030-4026
年:
2018
卷:
157
页码:
343-352
基金类别:
This work is supported by Chutian Scholar Programm – Chutian Student of Hubei Province , Hubei Provincial Department of Education (No. D20161705 ), Science and Technology Department of Hubei Province (No. 2016CFB298 ), Grain Administration of Hubei Province (No. 2060404 ), the Recruitment Program of Wuhan Polytechnic University (No. 2017RZ05 ), Research and Innovation Initiatives of WHPU (No. 2017y27 and 2016J06 ).
机构署名:
本校为第一且通讯机构
院系归属:
电气与电子工程学院
摘要:
Feature extraction is a key problem in spectral analysis. Spectrum collected with spectrometer have latent low-rank component. If spectrum can be represented as a superposition of low-rank component and an approximation term, the spectrum feature is obtained. In this paper, a novel low-rank based infrared spectral feature extraction method is proposed. Employing a slide window to convert a single spectrum into a matrix, which can be decomposed as the superposition of a low-rank component and feature. In machine learning, nuclear norm is employe...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com