版权说明 操作指南
首页 > 成果 > 详情

BPNN-QSTR Models for Triazine Derivatives for Lubricant Additives

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Tingting;Wang, Zhan;Chen, Hao;Dai, Kang;Gao, Xinlei*
通讯作者:
Gao, Xinlei
作者机构:
[Wang, Tingting; Gao, Xinlei; Chen, Hao] Wuhan Polytech Univ, Sch Chem & Environm Engn, Wuhan 430023, Hubei, Peoples R China.
[Wang, Zhan] Wuhan Polytech Univ, Coll Food Sci & Engn, Wuhan 430023, Hubei, Peoples R China.
[Dai, Kang] South Cent Univ Nationalities, Coll Pharm, Wuhan 430074, Hubei, Peoples R China.
通讯机构:
[Gao, Xinlei] W
Wuhan Polytech Univ, Sch Chem & Environm Engn, Wuhan 430023, Hubei, Peoples R China.
语种:
英文
关键词:
quantitative structure tribo-ability relationship;back propagation neural network;lubricant additives;extreme pressure;anti-wear;lubricant additives
期刊:
Journal of Tribology
ISSN:
0742-4787
年:
2020
卷:
142
期:
1
页码:
011801
基金类别:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China [51675395]; Special Fund for Outstanding Young and Middle-aged Scientific; Technological Innovation Team in Hubei Province [T201709]
机构署名:
本校为第一且通讯机构
院系归属:
食品科学与工程学院
化学与环境工程学院
摘要:
Abstract Triazine derivatives are a kind of lubricant additives with excellent tribological properties. It is of great significance to study the quantitative relationship between their chemical structure and tribological properties. In the present study, the quantitative structure tribo-ability relationships (QSTR) between 20 triazine derivatives and their respective extreme-pressure properties as lubricant additives were analyzed by the back propagation neural network (BPNN) method. The BPNN-QSTR model had satisfactory stability and predictive ability (R2 = 0.9965, R2(LOO) = 0.9195, q2 = 0.8...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com