版权说明 操作指南
首页 > 成果 > 详情

A Data-Driven Hybrid Optimization Model Integrating an Improved Zebra Optimization Algorithm and BP Neural Network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Hua Yang;Zhan Shu;Zhonger Li;Junda Liu;Yuanyuan Li;...
作者机构:
[Hua Yang; Zhan Shu; Zhonger Li; Junda Liu; Yuanyuan Li; Junying Guo] College of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China
语种:
英文
关键词:
Hybrid Optimization;Improved Zebra Optimization Algorithm;BP Neural Network;Logistic Chaotic Initialization;Golden Sine Optimization Strategy
年:
2025
页码:
703-706
会议名称:
2025 IEEE 7th International Conference on Communications, Information System and Computer Engineering (CISCE)
会议论文集名称:
2025 IEEE 7th International Conference on Communications, Information System and Computer Engineering (CISCE)
会议时间:
09 May 2025
会议地点:
Guangzhou, China
出版者:
IEEE
ISBN:
979-8-3315-0162-4
基金类别:
10.13039/501100001809-National Natural Science Foundation of China 10.13039/100006190-Research and Development 10.13039/501100008960-Wuhan Polytechnic University 10.13039/501100007046-Wuhan University
机构署名:
本校为第一机构
院系归属:
数学与计算机学院
摘要:
Data-driven applications need advanced predictive modeling to manage nonlinear relationships and high-dimensional datasets. To address these challenges, this research presents a novel hybrid optimization model integrating an Improved Zebra Optimization Algorithm (IZOA) with a Back Propagation (BP) neural network to enhance predictive performance in complex datasets. The IZOA addresses inherent limitations in traditional optimization methods by employing a Logistic chaotic initialization technique that increases population diversity. Furthermore...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com