版权说明 操作指南
首页 > 成果 > 详情

Tomato Leaf Detection Algorithm Based on Improved YOLOv5

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Hua Yang;Chengwu Peng;Shenyang Sheng;Qi Wang;Jie Xiao;...
作者机构:
[Hua Yang; Chengwu Peng; Shenyang Sheng; Qi Wang; Jie Xiao; Shi Cao; Zhaoqi Meng; Tianwei Tang; Rou Fu; Xiaomei Huang] School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China
语种:
英文
关键词:
Tomato leaf;SCConv;PSA;DIoU;YOLOv5
期刊:
2024 International Conference on New Trends in Computational Intelligence (NTCI)
年:
2024
页码:
91-95
会议名称:
2024 International Conference on New Trends in Computational Intelligence (NTCI)
会议论文集名称:
2024 International Conference on New Trends in Computational Intelligence (NTCI)
会议时间:
18 October 2024
会议地点:
Qingdao, China
出版者:
IEEE
ISBN:
979-8-3315-1703-8
机构署名:
本校为第一机构
院系归属:
数学与计算机学院
摘要:
To address the challenges of complex backgrounds and low accuracy in detecting tomato leaves, we propose an improved tomato leaf detection model, YOLOv5s-SPD, based on the YOLOv5 network, for identifying tomato leaf diseases. First, the SSConv module is introduced into the backbone network of the YOLOv5 algorithm, replacing the C3 module with the SSConv module to reduce feature redundancy in both spatial and channel dimensions, thus lowering the computational load of the model. Additionally, a PSA attention mechanism is incorporated to enhance the model's feature extraction capability for toma...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com