版权说明 操作指南
首页 > 成果 > 详情

Axial Attention-Infused U-Net for Document-level Relation Extraction

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Hua Yang;Jie Xiao;Hao Shen;Qi Wang;ShenYang Sheng;...
作者机构:
[Hao Shen] Wuhan Baijuncheng Technology Co., Ltd, Wuhan, China
[Yue Huang] School of Management, Wuhan Polytechnic University, Wuhan, China
[Hua Yang; Jie Xiao; Qi Wang; ShenYang Sheng; ChengWu Peng; Sha Li; LiHao Yu; ZhaoQi Meng; Rou Fu] School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China
语种:
英文
关键词:
relation extraction;document-level;global information;semantic segmentation;class imbalance
年:
2024
页码:
138-143
会议名称:
2024 3rd International Conference on Artificial Intelligence, Human-Computer Interaction and Robotics (AIHCIR)
会议论文集名称:
2024 3rd International Conference on Artificial Intelligence, Human-Computer Interaction and Robotics (AIHCIR)
会议时间:
15 November 2024
会议地点:
Hong Kong, China
出版者:
IEEE
ISBN:
979-8-3315-3404-2
机构署名:
本校为其他机构
院系归属:
数学与计算机学院
管理学院
摘要:
Relation extraction (RE) is vital in natural language processing (NLP) for Analyzing the relationships among entities within unstructured text, supporting applications like knowledge graphs and question-answering systems. Existing methods often utilize graph neural networks (GNNs) and pretrained language models such as BERT, but they struggle with long-range dependencies and class imbalance in sparse relationships. In this paper, we introduce AxU-Doc, an innovative model that leverages axial attention within a U-shaped architecture to effectively acquire comprehensive information and promote l...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com