版权说明 操作指南
首页 > 成果 > 详情

Total Partial Least Square Regression and its application in infrared spectra quantitative analysis

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Mou, Yi;Chen, Weizhen;Liu, Jianguo
通讯作者:
Mou, Y
作者机构:
[Liu, Jianguo; Mou, Yi; Chen, Weizhen] Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan 430023, Peoples R China.
通讯机构:
[Mou, Y ] W
Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan 430023, Peoples R China.
语种:
英文
关键词:
PLS;Regression;Quantitative analysis
期刊:
Measurement
ISSN:
0263-2241
年:
2025
卷:
247
页码:
116794
机构署名:
本校为第一且通讯机构
院系归属:
电气与电子工程学院
摘要:
The quantitative analysis model for infrared spectroscopy primarily relies on regression methods. Partial Least Squares (PLS) is proposed to overcome the small sample problem through dimensionality reduction. However, spectral data may still include orthogonal variation components. Orthogonal Signal Correction (OSC) methods are developed to remove these orthogonal components, improving analysis accuracy, but they require orthogonality assumptions. Total Least Squares (TLS) regression is introduced to suppress noise and perturbations in both predictor and response variables, yet it does not sol...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com