版权说明 操作指南
首页 > 成果 > 详情

A Study on Interpretable Electric Load Forecasting Model with Spatiotemporal Feature Fusion Based on Attention Mechanism

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Weizhen Chen*;Shuaishuai Li
通讯作者:
Weizhen Chen
作者机构:
[Shuaishuai Li] School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430048, China
Author to whom correspondence should be addressed.
[Weizhen Chen] School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430048, China<&wdkj&>Author to whom correspondence should be addressed.
通讯机构:
[Weizhen Chen] S
School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430048, China<&wdkj&>Author to whom correspondence should be addressed.
语种:
英文
关键词:
power load forecasting;spatiotemporal feature fusion;attention mechanism;interpretability
期刊:
Technologies
ISSN:
2227-7080
年:
2025
卷:
13
期:
6
页码:
219-
基金类别:
This research was supported by the scientific research fund of Hubei Provincial Department of Education (b2020061).
机构署名:
本校为第一且通讯机构
院系归属:
电气与电子工程学院
摘要:
Driven by the global “double carbon” goal, the volatility of renewable energy poses a challenge to the stability of power systems. Traditional methods have difficulty dealing with high-dimensional nonlinear data, and the single deep learning model has the limitations of spatiotemporal feature decoupling and being a “black box”. Aiming at the problem of insufficient accuracy and interpretability of power load forecasting in a renewable energy grid connected scenario, this study proposes an interpretable spatiotemporal feature fusion model ba...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com