版权说明 操作指南
首页 > 成果 > 详情

Adaptive classification of artistic images using multi-scale convolutional neural networks

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xiang, Jin;Yang, Yi;Bai, Junwei
通讯作者:
Xiang, J
作者机构:
[Xiang, Jin; Bai, Junwei] Wuhan Polytech Univ, Sch Art & Design, Wuhan, Peoples R China.
[Yang, Yi] Hubei Inst Fine Arts, Sch Ind Design, Wuhan, Hubei, Peoples R China.
通讯机构:
[Xiang, J ] W
Wuhan Polytech Univ, Sch Art & Design, Wuhan, Peoples R China.
语种:
英文
关键词:
Multi-scale convolutional neural network;Artistic images;Image classification;Feature extraction
期刊:
PEERJ COMPUTER SCIENCE
年:
2024
卷:
10
基金类别:
Research on the Design of Integrated Material Creation Based on Fractal Theory, Research Funding of Wuhan Polytechnic University [2022RZ079]
机构署名:
本校为第一且通讯机构
院系归属:
艺术设计学院
摘要:
The current art image classification methods have low recall and accuracy rate issues . To improve the classification performance of art images, a new adaptive classification method is designed employing multi-scale convolutional neural networks (CNNs). Firstly, the multi-scale Retinex algorithm with color recovery is used to complete the enhancement processing of art images. Then the extreme pixel ratio is utilized to evaluate the image quality and obtain the art image that can be analyzed. Afterward, edge detection technology is implemented to extract the key features in the image and use th...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com