This article proposes a novel soft multiprototype clustering algorithm (SMP) for high-dimensional data clustering with noisy and complex structural patterns. SMP integrates dimensionality reduction, multiprototype clustering, and multiprototype merge clustering under a two-layer seminonnegative matrix factorization (semi-NMF) architecture. Specifically, the first semi-NMF layer performs multiprototype clustering, which solves the problem that a single prototype cannot represent complex data structures. Meanwhile, the multiprototype fuzzy clustering constraints ensure that the multiprototypes b...