版权说明 操作指南
首页 > 成果 > 详情

Weighted symmetric nonnegative matrix factorization and graph-boosting to improve the attributed graph clustering

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Shunlei;Wan, Lili;Zhang, Yin;Luo, Lixia
通讯作者:
Zhang, Y
作者机构:
[Li, Shunlei] Chinese Univ Hong Kong, Multiscale Med Robot Ctr Ltd, Hong Kong, Peoples R China.
[Wan, Lili] Wuhan Donghu Univ, Sch Mech & Elect Engn, Wuhan 430212, Hubei, Peoples R China.
[Wan, Lili] Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan 430023, Hubei, Peoples R China.
[Zhang, Yin; Zhang, Y] Guilin Univ Elect Technol, Sch Optoelect Engn, Guilin 541004, Guangxi, Peoples R China.
[Luo, Lixia] Hunan Univ Informat Technol, Sch Comp Sci & Engn, Changsha 410148, Hunan, Peoples R China.
通讯机构:
[Zhang, Y ] G
Guilin Univ Elect Technol, Sch Optoelect Engn, Guilin 541004, Guangxi, Peoples R China.
语种:
英文
关键词:
Attributed graph;Graph clustering;Graph-boosting;Nonnegative matrix factorization;Weighted symmetric
期刊:
Engineering Applications of Artificial Intelligence
ISSN:
0952-1976
年:
2025
卷:
142
页码:
109914
基金类别:
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
机构署名:
本校为其他机构
院系归属:
电气与电子工程学院
摘要:
Graph clustering is a critical task in network analysis, aimed at grouping nodes based on their structural or attributed similarities. In particular, attributed graph clustering, which considers both structural links and node attributes, is essential for complex networks where additional node information is available. Nonnegative Matrix Factorization (NMF) has shown promise in graph clustering; however, it faces limitations when applied to attributed graph clustering, such as an inability to detect outliers, distortion of geometric data point structures, and disregard for attributed informatio...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com