版权说明 操作指南
首页 > 成果 > 详情

Research on apple surface defect detection based on improved YOLOv8

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Hua Yang;Haifeng Zhang;Jie Xiao;Qi Wang;Shenyang Sheng;...
作者机构:
[Tiancheng Zhang] Bi Shengyun Information Technology Co., LTD
[Hua Yang; Haifeng Zhang; Jie Xiao; Qi Wang; Shenyang Sheng; Chengwu Peng] School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China
语种:
英文
关键词:
Object detection;Defect detection;Computer vision;YOLOv8;Attention mechanism
年:
2024
页码:
1129-1133
会议名称:
2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)
会议论文集名称:
2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)
会议时间:
15 March 2024
会议地点:
Chongqing, China
出版者:
IEEE
ISBN:
979-8-3503-3917-8
机构署名:
本校为其他机构
院系归属:
数学与计算机学院
摘要:
With the continuous development of artificial intelligence technology, deep learning methods have been widely used in smart agriculture. With the continuous progress of object detection algorithms, it is a future trend to introduce computer vision methods into smart agriculture. This paper proposes an improved YOLOv8 network model for detecting whether apple is still in a healthy state in smart agriculture systems. By introducing a better backbone network EfficientNet, features can be extracted from the data efficiently. In addition, by introducing a novel WIOU calculation function, the rectan...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com