版权说明 操作指南
首页 > 成果 > 详情

Skin lesion region segmentation model based on improved U2Net

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Huang, Bin;Fang, Chao
通讯作者:
Fang, C
作者机构:
[Fang, Chao; Fang, C; Huang, Bin] Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan, Peoples R China.
通讯机构:
[Fang, C ] W
Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan, Peoples R China.
语种:
英文
关键词:
Image segmentation;Convolutional neural network;Attention;skin lesion
期刊:
PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023
年:
2023
页码:
700–705
会议名称:
4th International Symposium on Artificial Intelligence for Medicine Science (ISAIMS)
会议论文集名称:
ISAIMS '23: Proceedings of the 2023 4th International Symposium on Artificial Intelligence for Medicine Science
会议时间:
OCT 20-22, 2023
会议地点:
Chengdu, PEOPLES R CHINA
会议主办单位:
[Huang, Bin;Fang, Chao] Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan, Peoples R China.
出版地:
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者:
ASSOC COMPUTING MACHINERY
ISBN:
979-8-4007-0813-8
机构署名:
本校为第一且通讯机构
院系归属:
电气与电子工程学院
摘要:
Skin cancer is one of the most common malignant tumors. In order to completely remove tumors and accurately identify and segment lesion areas, this paper proposes a skin lesion segmentation method based on U2Net. Firstly, deep separable convolution is used to replace conventional convolution for feature extraction of RSU blocks. Embedded branch structures are added at skip connections, and Receptive Field Block(RFB) modules are used to integrate semantic information at different scales. Then, Add Attention Gates (AG) and Normalization-based Attention Modules (NAM), which together form the NAM-...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com