版权说明 操作指南
首页 > 成果 > 详情

Attention Guided Food Recognition via Multi-Stage Local Feature Fusion

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Deng, Gonghui;Wu, Dunzhi;Chen, Weizhen
通讯作者:
Chen, WZ
作者机构:
[Chen, Weizhen; Wu, Dunzhi; Deng, Gonghui] Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan 430048, Peoples R China.
通讯机构:
[Chen, WZ ] W
Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan 430048, Peoples R China.
语种:
英文
关键词:
Fine-grained image recognition;food image recognition;attention mechanism;local feature fusion
期刊:
计算机、材料和连续体(英文)
ISSN:
1546-2218
年:
2024
卷:
80
期:
2
页码:
1985-2003
基金类别:
Hubei Provincial Natural Science Foun-dation [2022CFB449]; Science Research Foundation of Education Department of Hubei Province [B2020061]
机构署名:
本校为第一且通讯机构
院系归属:
电气与电子工程学院
摘要:
The task of food image recognition, a nuanced subset of fine-grained image recognition, grapples with substantial intra-class variation and minimal inter-class differences. These challenges are compounded by the irregular and multi-scale nature of food images. Addressing these complexities, our study introduces an advanced model that leverages multiple attention mechanisms and multi-stage local fusion, grounded in the ConvNeXt architecture. Our model employs hybrid attention (HA) mechanisms to pinpoint critical discriminative regions within images, substantially mitigating the influence of bac...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com