版权说明 操作指南
首页 > 成果 > 详情

A novel real-time crayfish weight grading method based on improved Swin Transformer

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wen, Ke;Chen, Yan;Zhu, Zhengwei;Yang, Jinzhou;Bao, Jinjin;...
通讯作者:
Chen, Y
作者机构:
[Hu, Zhigang; Peng, Xianhui; Wen, Ke; Yang, Jinzhou; Bao, Jinjin; Jiao, Ming; Fu, Dandan; Chen, Yan; Zhu, Zhengwei] Wuhan Polytech Univ, Sch Mech Engn, Wuhan, Peoples R China.
通讯机构:
[Chen, Y ] W
Wuhan Polytech Univ, Sch Mech Engn, Wuhan, Peoples R China.
语种:
英文
关键词:
correlation;crayfish;image segmentation;weight grading
期刊:
Journal of Food Science
ISSN:
0022-1147
年:
2025
卷:
90
期:
2
页码:
e70008-
机构署名:
本校为第一且通讯机构
院系归属:
机械工程学院
摘要:
This study proposed a novel detection method for crayfish weight classification based on an improved Swin-Transformer model. The model demonstrated a Mean Intersection over Union (MIOU) of 90.36% on the crayfish dataset, outperforming the IC-Net, DeepLabV3, and U-Net models by 17.44%, 5.55%, and 1.01%, respectively. Furthermore, the segmentation accuracy of the Swin-Transformer model reached 99.0%, surpassing the aforementioned models by 1.25%, 1.73%, and 0.46%, respectively. To facilitate weight prediction of crayfish from segmented images, this study also investigated the correlation between...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com