版权说明 操作指南
首页 > 成果 > 详情

Reinforcement Learning-Driven Hunter-Prey Algorithm Applied to 3D Underwater Sensor Network Coverage Optimization

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zibo Huang;Fangxiu Wang;Chen Su;Yi Wang;Hui Liu
作者机构:
[Zibo Huang; Fangxiu Wang; Chen Su; Yi Wang; Hui Liu] School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China
语种:
英文
期刊:
IEEE ACCESS
ISSN:
2169-3536
年:
2025
卷:
13
页码:
78161-78181
基金类别:
Excellent Young and Middle Aged Science and Technology Innovation Team Project in Hubei Province (Grant Number: T2021009) 10.13039/501100010816-Hubei Provincial Department of Education Science and Technology Plan Project (Grant Number: D20211604)
机构署名:
本校为第一机构
院系归属:
数学与计算机学院
摘要:
As one of the key application scenarios of wireless sensor networks, the coverage optimization of underwater wireless sensor networks (UWSNs) requires special consideration of three-dimensional spatial characteristics, which distinctly differs from traditional terrestrial environment coverage issues. To address the problems of low coverage and uneven distribution in UWSNs within a three-dimensional space, we propose a Reinforcement Learning-driven Hunter-Prey Optimization (RL-HPO) algorithm. Firstly, a nonlinear convergence factor is designed to regulate the exploration and exploitation phases...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com