版权说明 操作指南
首页 > 成果 > 详情

GS-LinYOLOv10: A drone-based model for real-time construction site safety monitoring

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Song, Yang;Chen, Zhenlin;Yang, Hua;Liao, Jifei
通讯作者:
Chen, ZL
作者机构:
[Chen, Zhenlin; Liao, Jifei; Song, Yang] Chengdu Univ Technol, Coll Environm & Civil Engn, Chengdu 610059, Peoples R China.
[Yang, Hua] Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430048, Peoples R China.
通讯机构:
[Chen, ZL ] C
Chengdu Univ Technol, Coll Environm & Civil Engn, Chengdu 610059, Peoples R China.
语种:
英文
关键词:
Drone-based monitoring;Construction site safety;IoT integration;GSConv;Real-time safety detection;Linformer
期刊:
Alexandria Engineering Journal
ISSN:
1110-0168
年:
2025
卷:
120
页码:
62-73
机构署名:
本校为其他机构
院系归属:
数学与计算机学院
摘要:
Real-time safety monitoring on construction sites is essential for ensuring worker safety, but traditional detection methods face challenges in dynamic environments with moving objects, occlusions, and complex conditions. To address these limitations, we propose GS-LinYOLOv10, an improved model based on YOLOv10, specifically designed for drone-based safety monitoring. The GSConv module introduces a lightweight feature extraction mechanism, reducing computational complexity without compromising detection accuracy. The Linformer-based attention mechanism efficiently captures global context, addr...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com