版权说明 操作指南
首页 > 成果 > 详情

Identification of broken rice rate based on grading and morphological classification

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Ye, Jianping;Hu, Zhigang;Chen, Yan;Fu, Dandan;Zhang, Jiafan
通讯作者:
Ye, JP
作者机构:
[Zhang, Jiafan; Hu, Zhigang; Ye, Jianping; Fu, Dandan; Chen, Yan] Wuhan Polytech Univ, Sch Mech Engn, Wuhan 430048, Peoples R China.
通讯机构:
[Ye, JP ] W
Wuhan Polytech Univ, Sch Mech Engn, Wuhan 430048, Peoples R China.
语种:
英文
关键词:
Broken rice rate;Grading;Morphological feature;CNN;Restore
期刊:
LWT
ISSN:
0023-6438
年:
2025
卷:
215
页码:
117175
机构署名:
本校为第一且通讯机构
院系归属:
机械工程学院
摘要:
The broken rice rate (BR) is a critical metric which influences the appearance, processing, and economic value of rice. However, current machine vision and machine learning approaches engender significant errors when calculating BR. This study introduces a novel restoring method for identifying BR by leveraging grading and morphological features. A three-class classification model using Convolutional Neural Network (CNN) was devised to distinguish broken rice types of crescent head, elliptical tail, and quadrilateral midst based on their morpho...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com