版权说明 操作指南
首页 > 成果 > 详情

Optimizing Electricity Load Forecasting Using the MFLO-BP Model: An Integration of Modified Frilled Lizard Optimization and BP Neural Network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Hua Yang;Zhonger Li;Zhan Shu;Junda Liu;Ming Zhao;...
作者机构:
[Hua Yang; Zhonger Li; Zhan Shu; Junda Liu; Ming Zhao; Mingzhi Mu] College of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China
语种:
英文
关键词:
MFLO-BP model;electricity load forecasting;Frilled Lizard Optimization Algorithm (FLO);Backpropagation Neural Network (BP);Lévy flight;self-weight factors
年:
2025
页码:
242-245
会议名称:
2025 8th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)
会议论文集名称:
2025 8th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)
会议时间:
09 May 2025
会议地点:
Nanjing, China
出版者:
IEEE
ISBN:
979-8-3315-1092-3
基金类别:
10.13039/501100001809-National Natural Science Foundation of China 10.13039/100006190-Research and Development 10.13039/501100008960-Wuhan Polytechnic University 10.13039/501100007046-Wuhan University
机构署名:
本校为第一机构
院系归属:
数学与计算机学院
摘要:
To enhance the accuracy and convergence speed of electricity load forecasting, this paper proposes an optimized electricity load forecasting model that integrates a Modified Frilled Lizard Optimization (MFLO) algorithm with a Backpropagation (BP) neural network. The MFLO addresses the traditional challenges of slow convergence and local optima by incorporating Lévy flight mechanisms and self-weight factors, which enhance global search capabilities. By integrating information entropy into fitness adjustments, the model improves the quality of i...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com