版权说明 操作指南
首页 > 成果 > 详情

A novel reconstruction method for maize component visualization in low-quality Raman hyperspectral images

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yang, Zhihan;Lv, Site;Zeng, Shan;Xia, Si;Li, Hao
通讯作者:
Zeng, S
作者机构:
[Zeng, Shan; Yang, Zhihan; Xia, Si; Li, Hao; Lv, Site] Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430023, Hubei, Peoples R China.
通讯机构:
[Zeng, S ] W
Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430023, Hubei, Peoples R China.
语种:
英文
关键词:
Raman imaging;Maize component visualization;Image reconstruction;Deep learning
期刊:
Microchemical Journal
ISSN:
0026-265X
年:
2025
卷:
210
页码:
113049
基金类别:
Hubei's Key Project of Research and Development Program [2023BBB046]; Excellent Young and Middle-aged Scientific and Technological Innovation Teams in Colleges and Universities of Hubei Province [T2021009]; Youth Talent Project of the Scientific Research Plan of the Hubei Provincial Department of Education [Q20231614]; NSFC-CAAC [U1833119]
机构署名:
本校为第一且通讯机构
院系归属:
数学与计算机学院
摘要:
The visualization of grain components through non-destructive detection is crucial for crop improvement and quality assessment, making it a research focus. Raman chemical imaging, an effective spectral imaging technology, has been extensively applied to detect various grain components. However, practical applications face challenges such as unclear Raman shift-composition relationships, low-quality images affected by noise, and long imaging times. To address these issues, this paper proposes a novel method, Raman Denoising Diffusion Generative Adversarial Network (RDDGAN), based on the Denoisi...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com