版权说明 操作指南
首页 > 成果 > 详情

Research on the Fiscal Revenue Prediction Model Based on Data Mining and Grey Neural Networks

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Zhaoyu Liu;Caidie Yi;Ziyi Zhu;Zengyang He;Yiye Wu;...
作者机构:
[Zhaoyu Liu; Caidie Yi; Ziyi Zhu; Zengyang He; Yiye Wu; Chengjuan Yang] School of Management, Wuhan Polytechnic University, Wuhan, Hubei, China
语种:
英文
关键词:
Fiscal prediction;Adaptive-Lasso regression;Grey neural network;Combined prediction model
年:
2025
页码:
779-784
会议名称:
2025 IEEE International Conference on Electronics, Energy Systems and Power Engineering (EESPE)
会议论文集名称:
2025 IEEE International Conference on Electronics, Energy Systems and Power Engineering (EESPE)
会议时间:
17 March 2025
会议地点:
Shenyang, China
出版者:
IEEE
ISBN:
979-8-3503-8958-6
机构署名:
本校为第一机构
院系归属:
管理学院
摘要:
The widespread application of data mining technology and the rapid development of machine learning techniques provide a simple and efficient method for predicting local fiscal revenue. The current main model for fiscal revenue prediction involves using data mining techniques for reasonable selection and analysis of data, followed by training neural networks to construct prediction models. This paper proposes a fiscal revenue prediction model based on data mining and grey neural networks, selecting 12 influencing factors that affect fiscal revenue. The Adaptive-Lasso method is used for variable...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com