版权说明 操作指南
首页 > 成果 > 详情

Establishing quantitative structure tribo-ability relationship model using Bayesian regularization neural network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Gao, Xinlei;Dai, Kang*;Wang, Zhan;Wang, Tingting;He, Junbo
通讯作者:
Dai, Kang
作者机构:
[Wang, Tingting; Gao, Xinlei; Wang, Zhan] Wuhan Polytech Univ, Sch Chem & Environm Engn, Wuhan 430023, Peoples R China.
[Dai, Kang] South Cent Univ Nationalities, Coll Pharm, Wuhan 430074, Peoples R China.
[He, Junbo] Wuhan Polytech Univ, Coll Food Sci & Engn, Wuhan 430023, Peoples R China.
通讯机构:
[Dai, Kang] S
South Cent Univ Nationalities, Coll Pharm, Wuhan 430074, Peoples R China.
语种:
英文
关键词:
quantitative structure tribo-ability relationship;Bayesian regularization neural network;lubricant additive;antiwear
期刊:
摩擦(英文)
ISSN:
2223-7690
年:
2016
卷:
4
期:
2
页码:
105-115
基金类别:
National Basic Research (973) Program of ChinaNational Basic Research Program of China [2013CB632303]; National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC) [51075309]
机构署名:
本校为第一机构
院系归属:
食品科学与工程学院
化学与环境工程学院
摘要:
Quantitative structure-activity relationship methods are used to study the quantitative structure triboability relationship (QSTR), which refers to the tribology capability of a compound from the calculation of structure descriptors. Here, we used the Bayesian regularization neural network (BRNN) to establish a QSTR prediction model. Two-dimensional (2D) BRNN–QSTR models can flexibly and easily estimate lubricant-additive antiwear properties. Our results show that electron transfer and heteroatoms (such as S, P, O, and N) in a lubricant-additi...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com