版权说明 操作指南
首页 > 成果 > 详情

An Enhanced YOLOv7-Based Algorithm for Industrial Defect Detection

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Yu Zhai;Jianjun Yang;Xiao Rang;Zean Wang;Houchang Pei;...
作者机构:
[Yu Zhai; Jianjun Yang; Xiao Rang; Zean Wang; Houchang Pei; Shaoyun Song] College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
语种:
英文
关键词:
Steel material defects detection;YOLOv7;Attention mechanism;Data enhancement
年:
2025
页码:
760-766
会议名称:
2025 5th International Conference on Artificial Intelligence and Industrial Technology Applications (AIITA)
会议论文集名称:
2025 5th International Conference on Artificial Intelligence and Industrial Technology Applications (AIITA)
会议时间:
28 March 2025
会议地点:
Xi'an, China
出版者:
IEEE
ISBN:
979-8-3315-0977-4
机构署名:
本校为第一机构
院系归属:
机械工程学院
摘要:
The detection of steel material defects is vital for enhancing product quality, safety, and reliability. However, conventional deep learning approaches, such as YOLOv7 and SSD, suffer from slow detection speed and suboptimal accuracy. To address these issues, we present an enhanced YOLOv7 algorithm for steel defect detection. Our approach optimizes the YOLOv7 model by integrating ResNet Channel Attention Connection modules into the backbone network to improve feature extraction capabilities. Furthermore, a self-Coordinate Attention mechanism is introduced to enhance detection accuracy. Additio...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com