版权说明 操作指南
首页 > 成果 > 详情

Solutions of nonlocal problem with critical exponent

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Qingfang*;Yang, Hua
通讯作者:
Wang, Qingfang
作者机构:
[Wang, Qingfang; Yang, Hua] Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430023, Peoples R China.
通讯机构:
[Wang, Qingfang] W
Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430023, Peoples R China.
语种:
英文
关键词:
Linearly coupled;critical exponent;asymptotic behavior;nonlocal problem
期刊:
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS
ISSN:
1534-0392
年:
2020
卷:
19
期:
12
页码:
5591-5608
基金类别:
2020 Mathematics Subject Classification. Primary: 35R11; Secondary: 35B33, 35B65. Key words and phrases. Linearly coupled, critical exponent, asymptotic behavior, nonlocal problem. The first author is supported by NSF grant 11701439. ∗ Corresponding author.
机构署名:
本校为第一且通讯机构
院系归属:
数学与计算机学院
摘要:
This paper deals with the system with linearly coupled of nonlocal problem with critical exponent, $ \begin{equation*} \begin{cases} (-\Delta)^\alpha u+\lambda_1u = |u|^{2_\alpha^*-2}u+\beta v , \quad x\in \Omega , \\ (-\Delta)^\alpha v+\lambda_2v = |v|^{2_\alpha^*-2}v+\beta u , \,\quad x\in \Omega , \\ u = v = 0,\ \ \qquad \qquad \qquad \quad \quad \qquad \,x\in \partial\Omega. \end{cases} \end{equation*} $ Here $ \Omega $ is a smooth bounded domain in $ {\mathbb{R}}^N(N>4\alpha) $, $ 00 $. Via a perturbation argument, by doing some delicate estimates for the nonlocal term, we overcome some d...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com