版权说明 操作指南
首页 > 成果 > 详情

Short communication: Genomic prediction based on unbiased estimation of the genomic relationship matrix in pigs

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, M. Y.;Shi, L. Y.;Machugh, D. E.;Wang, X. Q.;Tian, J. J.;...
通讯作者:
Zhao, FP
作者机构:
[Wang, L. G.; Wang, L. X.; Tian, J. J.; Wang, X. Q.; Zhao, F. P.; Li, M. Y.] Chinese Acad Agr Sci, Inst Anim Sci, State Key Lab Anim Biotech Breeding, Beijing 100193, Peoples R China.
[Shi, L. Y.] Wuhan Polytech Univ, Sch Anim Sci & Nutr Engn, Wuhan 430023, Peoples R China.
[Machugh, D. E.] Univ Coll Dublin, UCD Sch Agr & Food Sci, Anim Genom Lab, Dublin D04 V1W8, Ireland.
[Deng, Y. J.] Anim Husb & Aquat Affairs Ctr Xiangxi Autonomous P, Jishou 416000, Hunan, Peoples R China.
通讯机构:
[Zhao, FP ] C
Chinese Acad Agr Sci, Inst Anim Sci, State Key Lab Anim Biotech Breeding, Beijing 100193, Peoples R China.
语种:
英文
关键词:
Genomic best linear unbiased prediction;Genomic selection;Kinship matrix;Large White pigs;Simulation study
期刊:
Animal
ISSN:
1751-7311
年:
2025
卷:
19
期:
2
页码:
101402
基金类别:
National Natural Science Foundations of China; China Scholarship Council, China; Zaozhuang Elite Industrial Innovation Program; Agricultural Science and Technology Innovation Program, China; [32172702]
机构署名:
本校为其他机构
院系归属:
动物科学与营养工程学院
摘要:
The traditional genomic relationship matrix ( GRM ) has shown to be a biased estimation of true kinship, which can affect subsequent genetic analyses. In this study, we employed an unbiased kinship ( UKin ) estimation method within the genomic best linear unbiased prediction framework to evaluate its prediction performance on both a simulated dataset and a Large White pig dataset. The simulated dataset encompasses six traits, 900 quantitative trait loci, and 36 000 single nucleotide polymorphisms ( SNPs ). Two scenarios (small effect genes; major genes and small effect genes) and three heritab...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com