版权说明 操作指南
首页 > 成果 > 详情

Research on Detection of Rice Pests and Diseases Based on Improved yolov5 Algorithm

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yang, Hua*;Lin, Dang;Zhang, Gexiang;Zhang, Haifeng;Wang, Junxiong;...
通讯作者:
Yang, Hua;Lin, D
作者机构:
[Zhang, Haifeng; Yang, Hua; Wang, Junxiong; Lin, Dang; Zhang, Shuxiang; Yang, H] Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430040, Peoples R China.
[Zhang, Gexiang] Chengdu Univ Technol, Sch Informat Sci & Technol, Chengdu 610059, Peoples R China.
通讯机构:
[Lin, D ; Yang, H] W
Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430040, Peoples R China.
语种:
英文
关键词:
adaptive NMS;membrane computing;pest detection;RepVGG network structure;SK attention mechanism
期刊:
Applied Sciences-Basel
ISSN:
2076-3417
年:
2023
卷:
13
期:
18
页码:
10188
基金类别:
This research was funded by the School Enterprise Cooperation Project (No. wphu-2021-kj-762 and 1145, No. whpu-2022-kj-1586 and 2153), the Hubei Provincial Teaching and Research Project (No. 2018368), and the Ministry of Education Industry-University Cooperation Collaborative Education Project (No. 220900786024216).
机构署名:
本校为第一且通讯机构
院系归属:
数学与计算机学院
摘要:
Rice pests and diseases have a significant impact on the quality and yield of rice, and even have a certain impact on and cause a loss in the national agricultural industry and economy. The timely and accurate detection of pests and diseases is the basic premise of formulating effective rice pest control and prevention programs. However, the complexity and diversity of pests and diseases and the high similarity between some pests and diseases make the detection and classification task of pests and diseases extremely difficult without detection ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com