版权说明 操作指南
首页 > 成果 > 详情

Stacking ensemble learning models diagnose pulmonary infections using host transcriptome data from metatranscriptomics.

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Tian;Deng, Ying;Wang, Wentao;Zhao, Zhe;Wu, Yiling;...
作者机构:
[Deng, Ying; Wang, Haoqian; Xia, Shutao; Zhang, Tian] Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
[Wu, Yiling; Xia, Shutao; Zhang, Tian] Peng Cheng Laboratory, Shenzhen, China
[Wang, Wentao; Zhao, Zhe] Zhengzhou KingMed Center for Clinical Laboratory, Zhengzhou, Henan, People's Republic of China
[Liao, Weifang] College of life science and technology, Wuhan Polytechnic University, Wuhan, People's Republic of China. leesalwf89@126.com
[Liao, Weijie] Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China. liaoweijie@szu.edu.cn
语种:
英文
关键词:
Machine learning models;Metatranscriptomic sequencing;Patients in severe condition;Prompt diagnosis;Pulmonary infections
期刊:
Scientific Reports
ISSN:
2045-2322
年:
2025
卷:
15
期:
1
页码:
30516
机构署名:
本校为其他机构
院系归属:
生命科学与技术学院
摘要:
The prompt diagnosis of pulmonary infections with unknown etiology in patients in severe condition remains a challenge due to the lack of rapid and effective diagnostic methods. While metatranscriptomic sequencing offers a powerful approach, its clinical utility is often limited by issues of timeliness. In this study, we conducted metatranscriptomic sequencing on bronchoalveolar lavage fluid (BALF) collected from critically ill, severely ill, and ICU patients. Based on microbial detection results, patients were classified into four types: negat...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com