版权说明 操作指南
首页 > 成果 > 详情

Discovery of Toxin-Degrading Enzymes with Positive Unlabeled Deep Learning

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Dachuan;Xing, Huadong;Liu, Dongliang;Han, Mengying;Cai, Pengli;...
通讯作者:
Tian, Ye;Wu, Aibo;Hu, QN
作者机构:
[Hu, QN; Tian, Yu; Lin, Huikang; Han, Mengying; Wu, Aibo; Liu, Dongliang; Cai, Pengli; Le, Yingying; Zhang, Dachuan; Xing, Huadong; Hu, Qian-Nan; Tian, Ye] Chinese Acad Sci, Shanghai Inst Nutr & Hlth, CAS Key Lab Computat Biol, CAS Key Lab Nutr Metab & Food Safety,Univ Chinese, Shanghai 200031, Peoples R China.
[Zhang, Dachuan] Swiss Fed Inst Technol, Inst Environm Engn, CH-8093 Zurich, Switzerland.
[Tian, Yu] Wuhan Polytech Univ, Sch Biol & Pharmaceut Engn, Wuhan 430023, Peoples R China.
[Sun, Bin; Guo, Yinghao] Harbin Med Univ, Dept Pharmacol, Harbin 150081, Peoples R China.
通讯机构:
[Hu, QN ; Tian, Y; Wu, AB] C
Chinese Acad Sci, Shanghai Inst Nutr & Hlth, CAS Key Lab Computat Biol, CAS Key Lab Nutr Metab & Food Safety,Univ Chinese, Shanghai 200031, Peoples R China.
语种:
英文
关键词:
biodegradation;synthetic biology;food safety;mycotoxin;machine learning;cheminformatics
期刊:
ACS CATALYSIS
ISSN:
2155-5435
年:
2024
卷:
14
期:
5
页码:
3336-3348
基金类别:
National Key Research and Development Program of China [2018YFA0900700, 2021YFC2103001, 2019YFA0904300, 2023YFF1104604]; National Science Fund for Distinguished Young Scholars [32025030]; Shanghai Agriculture Applied Technology Development Program, China [T2023219]; International Partnership Program of the Chinese Academy of Sciences (CAS) [153D31KYSB20170121, 176GJHZ2022031GC]; CAS Science and Technology Service Network Initiative Program [QYZDB-SSW-SMC012]
机构署名:
本校为其他机构
院系归属:
生命科学与技术学院
摘要:
Identifying functional enzymes for the catalysis of specific biochemical reactions is a major bottleneck in the de novo design of biosynthesis and biodegradation pathways. Conventional methods based on microbial screening and functional metagenomics require long verification periods and incur high experimental costs; recent data-driven methods apply only to a few common substrates. To enable rapid and high-throughput identification of enzymes for complex and less-studied substrates, we propose a robust enzyme's substrate promiscuity prediction model based on positive unlabeled learning. Using ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com