版权说明 操作指南
首页 > 成果 > 详情

Vehicle and Pedestrian Detection Algorithm in Foggy Weather Based on Improved YOLO v10

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Qiyao Luo;Yongqing Qian
作者机构:
[Qiyao Luo; Yongqing Qian] School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, China
语种:
英文
关键词:
Foggy weather;BIFPN;MANet;Dysample
年:
2025
页码:
291-295
会议名称:
2025 6th International Conference on Artificial Intelligence and Electromechanical Automation (AIEA)
会议论文集名称:
2025 6th International Conference on Artificial Intelligence and Electromechanical Automation (AIEA)
会议时间:
01 August 2025
会议地点:
Hefei, China
出版者:
IEEE
ISBN:
979-8-3315-0264-5
机构署名:
本校为第一机构
院系归属:
电气与电子工程学院
摘要:
Due to reduced visibility and other reasons, the probability of accidents involving vehicles and pedestrians increases in foggy weather. In this paper, we present a real-time and efficient vehicle-pedestrian detection model for foggy images. In the backbone network, we added Mixed Aggregation Network (MANet) to replace C2f module to achieve stronger feature extraction. In the neck network, we introduced the Bidirectional Feature Pyramid Network (BIPFN) structure and used dysample for upsampling to achieve fast and efficient feature fusion in the model. In the loss function, we introduced Wise-...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com