版权说明 操作指南
首页 > 成果 > 详情

Unsupervised Representation Learning of Image-Based Plant Disease with Deep Convolutional Generative Adversarial Networks

认领
导出
Link by 中国知网会议论文
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Li, Jie*;Jia, Junjie;Xu, Donglai
通讯作者:
Li, Jie
作者机构:
[Jia, Junjie; Li, Jie] Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan, Hubei, Peoples R China.
[Xu, Donglai] Teesside Univ, Sch Sci & Engn, Middlesbrough TS1 3BA, Cleveland, England.
通讯机构:
[Li, Jie] W
Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan, Hubei, Peoples R China.
语种:
英文
关键词:
Unsupervised Representation Learning;Plant Disease;Deep Convolutional Generative Adversarial Networks
期刊:
Chinese Control Conference
ISSN:
1934-1768
年:
2018
卷:
2018-July
页码:
9159-9163
会议名称:
第37届中国控制会议
会议时间:
2018-07-25
会议地点:
中国湖北武汉
机构署名:
本校为第一且通讯机构
院系归属:
电气与电子工程学院
摘要:
Rapid identification of plant disease is essential for food security. Deep learning, the latest breakthrough in computer vision, is promising for plant disease severity classification, as the method avoids the labor-intensive feature engineering and threshold-based segmentation. Using a public dataset of 54,306 images of diseased and healthy plant leaves collected under controlled conditions, a deep convolutional neural network and unsupervised methods are used to identify 14 crop species and 26 diseases. The trained model achieves an accuracy of 89.83% o...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com