版权说明 操作指南
首页 > 成果 > 详情

Pixel-Level and Global Similarity-Based Adversarial Autoencoder Network for Hyperspectral Unmixing

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wei Tao;Haiyang Zhang;Shan Zeng;Long Wang;Chaoxian Liu;...
作者机构:
[Wei Tao; Haiyang Zhang; Shan Zeng; Long Wang; Chaoxian Liu; Bing Li] College of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China
语种:
英文
期刊:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ISSN:
1939-1404
年:
2025
卷:
18
页码:
7064-7082
基金类别:
Hubei's Key Project of Research and Development Program (Grant Number: 2023BBB046) Excellent Young and Middle-Aged Scientific and Technological Innovation Teams in Colleges and Universities of Hubei Province (Grant Number: T2021009) NSFC-CAAC (Grant Number: U1833119) Young Talents Project of the Science Research Program of Hubei Provincial Department of Education (Grant Number: 2023Q20231606) Knowledge Innovation Program of Wuhan-Shuguang Project (Grant Number: 2023010201020460)
机构署名:
本校为第一机构
院系归属:
数学与计算机学院
摘要:
Hyperspectral unmixing is a critical task in remote sensing, enabling the decomposition of hyperspectral data into their constituent endmembers and abundances. The loss of the traditional unmixing algorithm based on deep learning typically depends on reducing the discrepancy between the original and reconstructed hyperspectral image. However, during the training process, the loss feedback method is relatively simple, resulting highly random unmixing results. Moreover, spatial feature extraction can effectively improve the unmixing effect, but existing spatial feature extraction methods in hype...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com