版权说明 操作指南
首页 > 成果 > 详情

Brain Causality Modeling Using Structure-Guided Spatiotemporal Diffusion Model for MCI Analysis

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Yanfei Zhu;Jiangtao Wang;Xuan Cheng;Junyi Chen;Hui Wei;...
作者机构:
Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, 430205, Wuhan, Hubei, China
School of Information Engineering, Hubei University of Economics, 430205, Wuhan, Hubei, China
[Zhi Yang] College of Electronics and Information Engineering, Sichuan University, 610065, Chengdu, China
[Yanfei Zhu] School of Foreign Languages, Sun Yat-sen University, 510275, Guangzhou, China
[Libin Lu] School of Mathematics and Computer Science, Wuhan Polytechnic University, 430023, Wuhan, China
语种:
英文
年:
2025
页码:
3-11
会议名称:
Brain Informatics: 17th International Conference, BI 2024, Bangkok, Thailand, December 13–15, 2024, Proceedings, Part II
出版地:
Berlin, Heidelberg
出版者:
Springer-Verlag
ISBN:
978-981-96-3296-1
机构署名:
本校为其他机构
院系归属:
数学与计算机学院
摘要:
Early diagnosis of mild cognitive impairment (MCI) is crucial for the effective treatment and intervention of neurodegenerative diseases. Effective connectivity is one kind of brain network, which is helpful for analyzing the pathogenic mechanism of MCI. It is challenging to model causal relationships between brain regions from multimodal imaging data. This study proposes a new method for brain network causality modeling based on the structure-guided spatiotemporal diffusion model (SSDM), aiming to improve the accuracy of MCI diagnosis. By utilizing the advanced diffusion models, we introduced...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com