摘要:
<jats:title>Abstract</jats:title><jats:p>Necroptosis, a newly discovered form of programmed cell death that combines the features of apoptosis and necrosis, is important in various physiological and pathological disorders. However, the role of necroptosis on intestinal injury during sepsis has been rarely evaluated. This study aimed to investigate the presence of necroptosis in intestinal injury, and its contribution to intestinal injury in a piglet model challenged with <jats:italic>Escherichia coli</jats:italic> lipopolysaccharide (LPS). Firstly, a typical cell necrotic phenomenon was observed in jejunum of LPS-challenged pigs by transmission electron microscope. Protein expression of necroptosis signals including receptor-interacting protein kinase (RIP) 1, RIP3, and phosphorylated mixed-lineage kinase domain-like protein (MLKL), mitochondrial proteins including phosphoglycerate mutase family member 5 (PGAM5) and dynamin-related protein 1 (DRP1), and cytoplasmic high-mobility group box 1 (HMGB1) were time-independently increased in jejunum of LPS-challenged piglets, which was accompanied by the impairment of jejunal morphology, and digestive and barrier function indicated by lower activities of jejunal disaccharidases and protein expression of jejunal tight junction proteins claudin-1 and occludin. Pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were also dynamically induced in serum and jejunum of piglets after LPS challenge. Moreover, pretreatment with necrostatin-1 (Nec-1), an specific inhibitor of necroptosis, inhibited necroptosis indicated by decreased necrotic ultrastructural changes and decreased protein expression of RIP1, RIP3, and phosphorylated MLKL as well as PGAM5, DRP1, and cytoplasmic HMGB1. Nec-1 pretreatment reduced jejunal morphological injury, and improved digestive and barrier function. Nec-1 pretreatment also decreased the levels of serum and jejunal pro-inflammatory cytokines and the numbers of jejunal macrophages and monocytes. These findings indicate for the first time that necroptosis is present and contributes to LPS-induced intestinal injury. Nec-1 may have a preventive effect on intestinal injury during sepsis.</jats:p>
摘要:
<jats:p> To test the dynamic changes of the expression of genes and microRNA in the gastrocnemius muscle after LPS challenge, 36 piglets were assigned to a control group (slaughtered 0 h after saline injection) and LPS groups (slaughtered at 1 h, 2 h, 4 h, 8 h, and 12 h after LPS treatment, respectively). After LPS treatment, the mRNA expression of IL-1β, IL-6, and TNF-α reached maximal levels at 1 h, 2 h, and 1 h, respectively ( P < 0.05), and mRNA expression of TLR4, NODs, muscle-specific ring finger 1, and muscle atrophy F-box peaked at 12 h ( P < 0.05). Moreover, the expression of miR-122, miR-135a, and miR-370 reduced at 1 h, 1 h, and 2 h, respectively ( P < 0.05), and miR-34a, miR-224, miR-132, and miR-145 reached maximum expression levels at 1 h, 1 h, 2 h, and 4 h, respectively ( P < 0.05). These results suggested that mRNA expression of pro-inflammatory cytokines was elevated in the early stage, mRNA expression of genes related to TLR4 and NODs signaling pathways and protein degradation increased in the later phase, and the expression of microRNA related to muscle inflammation and protein degradation changed in the early stage after LPS injection. </jats:p>
摘要:
Long-chain n-3 polyunsaturated fatty acids are known to have beneficial effects on intestinal health. However, the underling mechanisms are largely unknown. The present study was conducted to investigate whether docosahexaenoic acid (DHA) attenuates TNF-alpha-induced intestinal cell injury and barrier dysfunction by modulating necroptosis signalling. Intestinal porcine epithelial cell line 1 was cultured with or without 12.5 mu g/ml DHA, followed by exposure to 50 ng/ml TNF-alpha for indicated time periods. DHA restored cell viability and cell number triggered by TNF-alpha. DHA also improved barrier function, which was indicated by increased trans-epithelial electrical resistance, decreased FD4 flux and increased membrane localisation of zonula occludins (ZO-1) and claudin-1. Moreover, DHA suppressed cell necrosis in TNF-alpha-challenged cells, as shown in the IncuCyte ZOOM (TM) live cell imaging system and transmission electron microscopy. In addition, DHA decreased protein expression of TNF receptor, receptor interacting protein kinase 1, RIP3 and phosphorylation of mixed lineage kinase-like protein, phosphoglycerate mutase family 5, dynamin-related protein 1 and high mobility group box-1 protein. Furthermore, DHA suppressed protein expression of caspase-3 and caspase-8. Collectively, these results indicate that DHA is capable of alleviating TNF-alpha-induced cell injury and barrier dysfunction by suppressing the necroptosis signalling pathway.
关键词:
Carbohydrate oxidation impairment;Flaxseed oil;Muscle atrophy;Protein kinase B/Forkhead box O signalling pathways;Toll-like receptor 4/nucleotide-binding oligomerisation domain protein signalling pathway
摘要:
<jats:title>Abstract</jats:title><jats:p>Flaxseed oil is rich in α-linolenic acid (ALA), which is the metabolic precursor of EPA and DHA. The present study investigated the effect of flaxseed oil supplementation on lipopolysaccharide (LPS)-induced muscle atrophy and carbohydrate oxidation impairment in a piglet model. Twenty-four weaned pigs were used in a 2 × 2 factorial experiment including dietary treatment (5 % maize oil<jats:italic>v</jats:italic>. 5 % flaxseed oil) and LPS challenge (saline<jats:italic>v</jats:italic>. LPS). On day 21 of treatment, the pigs were injected intraperitoneally with 100 μg/kg body weight LPS or sterile saline. At 4 h after injection, blood, gastrocnemius muscle and longissimus dorsi muscle were collected. Flaxseed oil supplementation increased ALA, EPA, total<jats:italic>n</jats:italic>-3 PUFA contents, protein:DNA ratio and pyruvate dehydrogenase complex quantity in muscles (<jats:italic>P</jats:italic>< 0·05). In addition, flaxseed oil reduced mRNA expression of toll-like receptor (TLR) 4 and nucleotide-binding oligomerisation domain protein (NOD) 2 and their downstream signalling molecules in muscles and decreased plasma concentrations of TNF-<jats:italic>α</jats:italic>, IL-6 and IL-8, and mRNA expression of TNF-<jats:italic>α</jats:italic>, IL-1<jats:italic>β</jats:italic>and IL-6 (<jats:italic>P</jats:italic>< 0·05). Moreover, flaxseed oil inclusion increased the ratios of phosphorylated protein kinase B (Akt) 1:total Akt1 and phosphorylated Forkhead box O (FOXO) 1:total FOXO1 and reduced mRNA expression of FOXO1, muscle RING finger (MuRF) 1 and pyruvate dehydrogenase kinase 4 in muscles (<jats:italic>P</jats:italic>< 0·05). These results suggest that flaxseed oil might have a positive effect on alleviating muscle protein loss and carbohydrates oxidation impairment induced by LPS challenge through regulation of the TLR4/NOD and Akt/FOXO signalling pathways.</jats:p>
摘要:
<jats:p><jats:bold>Background:</jats:bold> Holly (<jats:italic>Ilex latifolia</jats:italic> Thunb.) polyphenols extracts (HPE) contain high amounts of polyphenols, including phenolic acids, triterpenoids, tannic acids, and so on, which have strong antioxidant function. This experiment was aimed to explore the protective effect and mechanism of HPE against hepatic injury induced by diquat.</jats:p><jats:p><jats:bold>Methods:</jats:bold> Thirty-two weaned piglets were allotted by a 2 × 2 factorial experiment design with diet type (basal diet vs. HPE diet) and diquat challenge (saline vs. diquat). On the 21st day, piglets were injected with diquat or saline. One week later, blood samples were collected. Then all piglets were slaughtered and hepatic samples were collected.</jats:p><jats:p><jats:bold>Results:</jats:bold> Dietary HPE supplementation improves hepatic morphology, the activities of plasma aspartate aminotransferase, alanine aminotransferase, and glutamyl transpeptidase, and enhances hepatic anti-oxidative capacity, while it regulates the expression of ferroptosis mediators (transferrin receptor protein 1, heat shock protein beta 1, solute carrier family 7 member 11, and glutathione peroxidase 4) in diquat-challenged piglets.</jats:p><jats:p><jats:bold>Conclusion:</jats:bold> These results indicate that dietary HPE supplementation enhances hepatic morphology and function, which is involved in modulating antioxidant capacity and ferroptosis.</jats:p>
摘要:
This study was conducted to elucidate the biological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cell proliferation, differentiation and gene expression in C2C12 myoblasts. C2C12 were treated with various concentrations of EPA or DHA under proliferation and differentiation conditions. Cell viability was analyzed using cell counting kit-8 assays (CCK-8). The Edu assays were performed to analyze cell proliferation. To analyze cell differentiation, the expressions of myogenic marker genes were determined at the transcriptional and translational levels by qRT-PCR, immunoblotting and immunofluorescence. Global gene expression patterns were characterized using RNA-sequencing. Phosphorylation levels of ERK and Akt were examined by immunoblotting. Cell viability and proliferation was significantly inhibited after incubation with EPA (50 and 100 muM) or DHA (100 muM). Both EPA and DHA suppressed C2C12 myoblasts differentiation. RNA-sequencing analysis revealed that some muscle-related genes were significantly downregulated following EPA or DHA (50 muM) treatment, including insulin-like growth factor 2 (IGF-2), troponin T3 (Tnnt3), myoglobin (Mb), myosin light chain phosphorylatable fast skeletal muscle (Mylpf) and myosin heavy polypeptide 3 (Myh3). IGF-2 was crucial for the growth and differentiation of skeletal muscle and could activate the PI3K/Akt and the MAPK/ERK cascade. We found that EPA and DHA (50 muM) decreased the phosphorylation levels of ERK1/2 and Akt in C2C12 myoblasts. Thus, this study suggested that EPA and DHA exerted an inhibitory effect on myoblast proliferation and differentiation and downregulated muscle-related genes expression.
关键词:
Long non-coding RNA;lipopolysaccharide;intestinal inflammation;cam signalling pathway;mTOR signalling pathway
摘要:
LPS can induce an inflammatory immune response in the intestine, and long non-coding RNA (lncRNA) is involved in the process of inflammatory disease. However, the biological role of lncRNA in the intestinal inflammation of piglets remains unclear. In this study, the lncRNA expression profile of the ileal mucosa of piglets challenged by LPS was analysed using lncRNA sequencing. In total, 112 novel lncRNAs were predicted, of which 58 were up-regulated and 54 down-regulated following LPS challenge. Expression of 15 selected lncRNAs was validated by quantitative PCR. We further investigated the target genes of lncRNA that were enriched in the signalling pathways involved in the inflammatory immune response by utilising Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes analysis, with cell adhesion molecules and mTOR signalling pathway identified. In addition, the co-expression networks between the differentially expressed lncRNAs and the target mRNAs were constructed, with seven core lncRNAs identified, which also demonstrated that the relationship between lncRNAs and the target genes was highly correlated. Our study offers important information about the lncRNAs of the mucosal immune system in piglets and provides new insights into the inflammatory mechanism of LPS challenge, which might serve as a novel target to control intestinal inflammation.