摘要:
Lotus root is a widely popular aquatic vegetable with edible and medicinal values. Here we report the structure and lipid-lowering activity of two lotus root polysaccharides LRW (lotus root polysaccharide by water extraction) and LRA (lotus root polysaccharide by alkali extraction), that were extracted by aqueous and alkaline solution respectively. The results showed that the yield of polysaccharide from lotus root could be significantly improved by alkali extraction. Basic composition and structural characterization showed that the total sugar contents of LRW and LRA were 96.83 % and 73.66 %, and the molecular weights were 2.464 × 10 5 Da and 1.727 × 10 5 Da, respectively. LRW and LRA had the similar structure that the main backbone consisted of →4)-α-D-Glcp-(1→ with branches at C-6 site. Both LRW and LRA could scavenge DPPH and hydroxyl radicals effectively, and have strong adsorption capacity to cholate salts in a concentration-dependent manner. In HepG2 cells, LRW and LRA inhibited the accumulation of lipid droplets induced by oleic acid, and increased the activity of T-SOD and CAT, meanwhile, reduced the level of MDA, TC and TG, showing good lipid-lowering activity. In comparison, the lipid-lowering effect of LRA was better than that of LRW. In addition, gene sequencing and RT-PCR showed that AMPK, ACC, PPARα and CPT-1 were essential for LRA to exert a lipid-lowering effect. This study provides a theoretical basis for the extraction and lipid-lowering application of lotus root polysaccharides.
Lotus root is a widely popular aquatic vegetable with edible and medicinal values. Here we report the structure and lipid-lowering activity of two lotus root polysaccharides LRW (lotus root polysaccharide by water extraction) and LRA (lotus root polysaccharide by alkali extraction), that were extracted by aqueous and alkaline solution respectively. The results showed that the yield of polysaccharide from lotus root could be significantly improved by alkali extraction. Basic composition and structural characterization showed that the total sugar contents of LRW and LRA were 96.83 % and 73.66 %, and the molecular weights were 2.464 × 10 5 Da and 1.727 × 10 5 Da, respectively. LRW and LRA had the similar structure that the main backbone consisted of →4)-α-D-Glcp-(1→ with branches at C-6 site. Both LRW and LRA could scavenge DPPH and hydroxyl radicals effectively, and have strong adsorption capacity to cholate salts in a concentration-dependent manner. In HepG2 cells, LRW and LRA inhibited the accumulation of lipid droplets induced by oleic acid, and increased the activity of T-SOD and CAT, meanwhile, reduced the level of MDA, TC and TG, showing good lipid-lowering activity. In comparison, the lipid-lowering effect of LRA was better than that of LRW. In addition, gene sequencing and RT-PCR showed that AMPK, ACC, PPARα and CPT-1 were essential for LRA to exert a lipid-lowering effect. This study provides a theoretical basis for the extraction and lipid-lowering application of lotus root polysaccharides.
摘要:
Previous studies have demonstrated corilagin's inhibitory effects on the growth of various cancer cells. Given the limited research on corilagin's impact on ovarian cancer, a particularly deadly gynecological malignancy, this study aimed to investigate corilagin's influence on A2780 ovarian cancer cell apoptosis and its underlying mechanisms. The goal was to evaluate corilagin's potential as a therapeutic agent for ovarian cancer. The results of the CCK-8 assay showed that corilagin inhibited the proliferation of A2780 ovarian cancer cells while exhibiting lower toxicity to normal ovarian surface epithelial cells (IOSE-80). We found that corilagin significantly altered the A2780 cell cycle, decreasing the proportion of cells in the G(0)/G(1) and G(2)/M phases and inducing cell cycle arrest in the S phase. At low concentrations, corilagin induced apoptosis in A2780 cells, accompanied by a decline in mitochondrial membrane potential and calcium influx. Transcriptome sequencing analysis identified differentially expressed apoptosis-related genes in corilagin-treated A2780 cells, primarily within the PI3K-AKT pathway. Furthermore, qPCR and Western blot results confirmed the upregulation of p53 and Bax genes and the downregulation of BCL-2. Corilagin also increased the expression of apoptotic factors caspase-9, caspase-3, PUMA, and cytochrome C, indicating its ability to induce apoptosis. Overall, corilagin effectively inhibited A2780 cell proliferation, induced cell cycle arrest, and triggered apoptosis. Its anti-tumor effect in vitro suggests its potential as a therapeutic agent for ovarian cancer A2780, especially through the PI3K/p53 pathway.
作者机构:
[Yang, Jiangke; Wang, Shiqing; Zheng, Yanli; Deng, Yuhui; Hu, Ping; Lei, Lei] Wuhan Polytech Univ, Coll Life Sci & Technol, Wuhan 430023, Peoples R China.;[Chan, Zhuhua; Hu, Ping] Marine Biol Resources Dev & Utilizat Engn Technol, TIO, MNR, Xiamen 361005, Fujian, Peoples R China.;[Peng, Wenfang; Peng, WF; Xue, Qingxin; Li, Jiaxin] Hubei Univ, Hubei Engn Res Ctr Bioenzyme Catalysis, Environm Microbial Technol Ctr Hubei Prov, Sch Life Sci,State Key Lab Biocatalysis & Enzyme E, Wuhan 430062, Peoples R China.
通讯机构:
[Yang, JK ] W;[Peng, WF ] H;[Chan, ZH ] M;Wuhan Polytech Univ, Coll Life Sci & Technol, Wuhan 430023, Peoples R China.;Marine Biol Resources Dev & Utilizat Engn Technol, TIO, MNR, Xiamen 361005, Fujian, Peoples R China.
关键词:
CRISPR-Cas9;High-yield and industrial-scale;Kluyveromyces lactis;Precision strain engineering;Recombinant calf chymosin;Secretory production
摘要:
As an important industrial enzyme, chymosin has been widely used in cheese manufacturing. Fermentation with Kluyveromyces lactis has allowed recombinant chymosin production to fit the growing global demand for cheese consumption; yet improvements can be made to allow for stable and larger-scale production. In this work, various c hymosin p roducing (CP) strains were constructed via targeted chromosomal integration of various copies of a p rochymosin e xpression c assette (PEC) using a CRISPR-Cas9 platform optimized for K. lactis. It enabled the demonstration that chymosin yields could be increased along with gradual chromosomal accumulation of PEC inserts within up to 3 copies. Finally, an optimal CP3i strain was constructed, and with which high yields of recombinant chymosin were attained, reaching ca. 1,200 SU/mL in shake-flask fermentation and ca. 28,000 SU/mL in batch-mode bioreaction, respectively. The activity of the product in milk-curding was observed. These findings provide direction to apply K. lactis-based platforms in the subsequent industrial-scale production of recombinant chymosin.
As an important industrial enzyme, chymosin has been widely used in cheese manufacturing. Fermentation with Kluyveromyces lactis has allowed recombinant chymosin production to fit the growing global demand for cheese consumption; yet improvements can be made to allow for stable and larger-scale production. In this work, various c hymosin p roducing (CP) strains were constructed via targeted chromosomal integration of various copies of a p rochymosin e xpression c assette (PEC) using a CRISPR-Cas9 platform optimized for K. lactis. It enabled the demonstration that chymosin yields could be increased along with gradual chromosomal accumulation of PEC inserts within up to 3 copies. Finally, an optimal CP3i strain was constructed, and with which high yields of recombinant chymosin were attained, reaching ca. 1,200 SU/mL in shake-flask fermentation and ca. 28,000 SU/mL in batch-mode bioreaction, respectively. The activity of the product in milk-curding was observed. These findings provide direction to apply K. lactis-based platforms in the subsequent industrial-scale production of recombinant chymosin.
摘要:
BACKGROUND: Diseases are often caused by multiple factors, angiogenesis-related genes (ARGs) have been shown to be associated with cancer, however, their role in colon cancer had not been fully explored. This study investigated potential biomarkers based on ARGs to improve prognosis and treatment effect in colon cancer. METHODS: ARGs associated with colon cancer prognosis were identified using Cox regression analysis and LASSO analysis. Furthermore, a prognostic model was constructed in colon cancer based on the 3 ARGs, and its biological function were analyzed. We evaluated the differences in tumor immune microenvironment based on prognostic signature. Finally, cell experiments confirmed the function of genes in colon cancer. RESULTS: The prognostic value of ARGs in colon cancer patients has been comprehensively analyzed for the first time and identified 3 ARGs with prognostic values. A prognosis risk model was constructed based on 3 ARGs and its prognostic value was validated on an independent external colon cancer dataset. In colon cancer patients, this prognostic feature was an independent risk factor and was significantly correlated with clinical feature information of colon cancer patients. This feature was also related to the immune microenvironment of colon cancer. Cell experiments showed that high expression of TNF Receptor Superfamily Member 1B (TNFRSF1B) significantly promoted apoptosis and inhibited proliferation of colon cancer cells. Therefore, TNFRSF1B may become an important regulatory factor in the progression of colon cancer by participating in intracellular functional regulation. CONCLUSIONS: This study constructed a prognostic risk model based on three ARGs and for the first time discovered that TNFRSF1B may become an important regulatory factor in cancer progression by participating in intracellular functional regulation.
摘要:
Cardiovascular complications are a primary focus in the clinical management of type 2 diabetes, as they are the leading causes of disability and mortality in individuals with diabetes. Insulin resistance and endothelial dysfunction commonly coexist in diabetic patients. An increasing body of research indicates a reciprocal and interconnected association between endothelial function and insulin resistance. Insulin resistance can manifest in two distinct forms: endothelial and metabolic, with the former predominantly affecting vascular endothelial cells and the latter primarily impacting peripheral cells. The understanding of endothelial insulin resistance is crucial in comprehending the pathophysiology of cardiovascular complications in type 2 diabetes. Hence, the objective of this study is to examine the correlations, interplays, and molecular pathways linking endothelial insulin resistance and metabolic insulin resistance, with the aim of offering novel insights and scholarly resources for the prevention and management of diabetic vascular complications.
期刊:
Applied Biochemistry and Biotechnology,2025年:1-19 ISSN:0273-2289
通讯作者:
Liu, PL
作者机构:
[Liu, Pulin; Wang, Siyi; Zhu, Kai] Wuhan Polytech Univ, Coll Life Sci & Technol, Wuhan 430023, Peoples R China.
通讯机构:
[Liu, PL ] W;Wuhan Polytech Univ, Coll Life Sci & Technol, Wuhan 430023, Peoples R China.
关键词:
Glucan 1,4-alpha-maltohydrolase;Pichia pastoris;Rational design;Signal leading sequence;Fermentation
摘要:
Glucan 1,4-alpha-maltohydrolase (3.2.1.133, GMH) is an important biocatalyst in the baking industry, which could delay the retrogradation of bread and improve its cold-storage durability. In the present study, a newly cloned Thgmh was characterized and secreted by Pichia pastoris (Komagataella pastoris). After computationally assisted rational design that promotes peptide folding, the maltogenic activity in supernatant was enhanced 1.6-fold in comparison with the base strain. The signal leading sequence screening and the gene dosage increment further improved secretion by approximately 6.4-fold. The purified rationally designed ThGMHs exhibited maximal activity against soluble starch at pH 7.0 and 60℃, and maltose is the main catalytic product. In a 5-L bioreactor, conventional fed-batch fermentation resulted in 6130 U mL(-1) extracellular maltogenic activity. Therefore, a promising strain for GMH production was developed, which provides a useful reference for the secretory production of other industrial enzymes.
摘要:
Identifying functional enzymes for the catalysis of specific biochemical reactions is a major bottleneck in the de novo design of biosynthesis and biodegradation pathways. Conventional methods based on microbial screening and functional metagenomics require long verification periods and incur high experimental costs; recent data-driven methods apply only to a few common substrates. To enable rapid and high-throughput identification of enzymes for complex and less-studied substrates, we propose a robust enzyme's substrate promiscuity prediction model based on positive unlabeled learning. Using this model, we identified 15 new degrading enzymes specific for the mycotoxins ochratoxin A and zearalenone, of which six could degrade >90% mycotoxin content within 3 h. We anticipate that this model will serve as a useful tool for identifying new functional enzymes and understanding the nature of biocatalysis, thereby advancing the fields of synthetic biology, metabolic engineering, and pollutant biodegradation.
作者机构:
[Jiang, Jiang; Liao, Rongfeng] Anhui Med Univ, Dept Urol, Affiliated Hosp 1, Hefei, Anhui, Peoples R China.;[Jiang, Jiang] Anhui Med Univ, Dept Ophthalmol, Affiliated Hosp 3, Hefei, Anhui, Peoples R China.;[Wang, Shu] Anhui Med Univ, Dept Geriatr, Affiliated Hosp 3, Hefei, Anhui, Peoples R China.;[Li, Yun] Wuhan Polytech Univ, Sch Biol & Pharmaceut Engn, Wuhan, Peoples R China.;[Li, Yun] Kindstar Global Precis Med Inst, Wuhan, Peoples R China.
通讯机构:
[Liao, RF ] A;Anhui Med Univ, Dept Urol, Affiliated Hosp 1, Hefei, Anhui, Peoples R China.
摘要:
More and more evidence shows that abnormal lipid metabolism leads to immune system dysfunction in AMD and promotes the occurrence of AMD by changing the homeostasis of ocular inflammation. However, the molecular mechanism underlying the effect of lipid metabolism on the phenotype and function of macrophages is still unclear, and the mechanism of association between AMD and cancer and COVID-19 has not been reported. The purpose of this study is to explore the interaction between lipid metabolism related genes, ferroptosis related genes and immunity in AMD, find out the key genes that affect the ferroptosis of AMD through lipid metabolism pathway and the molecular mechanism that mediates the action of macrophages, and find out the possible mechanism of lipid metabolism and potential co-therapeutic targets between AMD and cancer and COVID-19, so as to improve treatment decision-making and clinical results. For the first time, we have comprehensively analyzed the fatty acid molecule related genes, ferroptosis related genes and immune microenvironment of AMD patients, and determined that mast cells and M1 macrophages are the main causes of AMD inflammation, and found that SCD is the core gene in AMD that inhibits ferroptosis through lipid metabolism pathway, and verified the difference in the expression of SCD in AMD in a separate external data set. Based on the analysis of the mechanism of action of the SCD gene, we found for the first time that Has-miR-199a-3p/RELA/SCD is the core axis of action of lipid metabolism pathway to inhibit the ferroptosis of AMD. By inhibiting the immune checkpoint, we can enhance the immune cell activity of AMD and lead to the transformation of macrophages from M2 to M1, thereby promoting the inflammation and pathological angiogenesis of AMD. At the same time, we found that ACOX2 and PECR, as genes for fatty acid metabolism, may regulate the expression of SCD during the occurrence and development of COVID-19, thus affecting the occurrence and development of AMD. We found that FASD1 may be a key gene for the joint action of AMD and COVID-19, and SCD regulates the immune infiltration of macrophages in glioma and germ line tumors. In conclusion, our results can provide theoretical basis for the pathogenesis of AMD, help guide the treatment of AMD patients and their potentially related diseases and help to design effective drug targets.
作者机构:
[Duan, Linlin; Duan, Haitao; Li, Guozheng; Duan, HT; Jia, Dan] Wuhan Res Inst Mat Protect, State Key Lab Special Surface Protect Mat & Applic, Wuhan 430030, Peoples R China.;[Duan, Linlin; Duan, Haitao; Li, Guozheng; Duan, HT; Jia, Dan] Hubei Longzhong Lab, Xiangyang 441000, Peoples R China.;[Liu, Jianfang] Wuhan Polytech Univ, Coll Life Sci & Technol, Wuhan 430030, Peoples R China.;[Cheng, Bingxue] Tsinghua Univ, State Key Lab Tribol Adv Equipment, Beijing 100084, Peoples R China.
通讯机构:
[Duan, HT ] W;Wuhan Res Inst Mat Protect, State Key Lab Special Surface Protect Mat & Applic, Wuhan 430030, Peoples R China.;Hubei Longzhong Lab, Xiangyang 441000, Peoples R China.
摘要:
In this work, a self-assembled hybrid phosphate nanoflower (HPN) containing Ba3(PO4)2 and NaBaPO4 was synthesized via BaCO3 primary crystals inducement. A ball-on-disc reciprocating tribometer was used to explore the tribological behavior of HPN as an additive for polyalphaolefin 8 (PAO8) on titanium alloy. Compared with the neat PAO8, after being lubricated with PAO8 containing HPN, the friction coefficient and wear rate decreased by 74.98% and 99.89%, respectively. The tribofilm at the friction interface was characterized and conformed by SEM, EDS, XPS, and cross-sectional TEM. As an additive to PAO8, HPN can participate in the formation of tribofilm and exhibit superior friction-reducing and anti-wear properties for titanium alloy. It was demonstrated that due to the P-O-Ti bonds, HPN can easily adsorb and deposit at the friction interface to form a tribofilm against wear. Besides, the simulation experiments showed that the repulsive force at the solid-liquid interface between HPN and oil molecules is the key to friction reduction and lubrication, and the comparative tribological experiments of different types of base oils were performed to verify the results of molecular dynamics.
摘要:
The myofibrillar protein (MP) of duck meat is prone to excessive oxidation during thermal processing, resulting in a decline in its overall quality. In this paper, the effect of shikimic acid on the oxidative structure of duck muscle fibrin was studied. The findings showed that, at a mass ratio of 1:50,000 (g/g) between shikimic acid and MP, the carbonyl content of MP was reduced by 74.20%, while the sulfhydryl content was increased by 73.56%. MP demonstrated the highest denaturation temperature, whereas its thermal absorption was the lowest. The percentage of α-helixes and β-sheets increased by 16.72% and 24.74%, respectively, while the percentage of irregular structures decreased by 56.23%. In addition, the surface hydrophobicity index of MP exhibited a significant decrease (p < 0.05), while there was a significant increase in its free radical-scavenging ability (p < 0.05). Molecular fluorescence spectrum analysis showed that shikimic acid could bind to MP, altering the internal environment of MP and enhancing its thermal stability. FTIR analysis showed that shikimic acid could enhance the distribution of protein particle sizes by reducing irregular structures, the proportion of β-rotation, and the degree of protein aggregation. It is hoped that this research can offer scientific support for improving meat processing technology.
摘要:
<jats:title>Abstract</jats:title><jats:sec>
<jats:title>Background</jats:title>
<jats:p>Hydrogen sulfide (H<jats:sub>2</jats:sub>S) is a novel signaling molecule involved in the growth and development of plants and their response to stress. However, the involvement of H<jats:sub>2</jats:sub>S in promoting the growth and development of tobacco plants is still unclear.</jats:p>
</jats:sec><jats:sec>
<jats:title>Results</jats:title>
<jats:p>In this study, we explored the effect of pre-soaking or irrigating the roots of tobacco plants with 0.0, 2.0, 4.0, 6.0, and 8.0mM of sodium hydrosulfide (NaHS) on endogenous H<jats:sub>2</jats:sub>S production, antioxidant enzymatic and cysteine desulfhydrase activities, seed germination, agronomic traits, photosynthetic pigments contents, and root vigor. The results revealed that exogenous NaHS treatment could significantly promote endogenous H<jats:sub>2</jats:sub>S production by inducing gene expression of <jats:italic>D/L-CD</jats:italic> and the activities of D/L-CD enzymes. Additionally, a significant increase in the agronomic traits and the contents of photosynthetic pigments, and no significant difference in carotenoid content among tobacco plants treated with 0.0 to 8.0mM of NaHS was observed. Additionally, a significant increase in the germination speed, dry weight, and vigor of tobacco seeds, whereas no significant effect on the percentage of seed germination was observed on NaHS treatment. Furthermore, NaHS treatment could significantly increase the activity of superoxide dismutase (SOD) and peroxidase (POD) enzymes, which reduces damage due to oxidative stress by maintaining reactive oxygen species homeostasis.</jats:p>
</jats:sec><jats:sec>
<jats:title>Conclusions</jats:title>
<jats:p>These results would aid in enhancing our understanding of the involvement of H<jats:sub>2</jats:sub>S, a novel signaling molecule to promote the growth and development of tobacco plants.</jats:p>
</jats:sec>
摘要:
Although cytochrome P450 enzymes are the most versatile biocatalysts in nature, there is insufficient comprehension of the molecular mechanism underlying their functional innovation process. Here, by combining ancestral sequence reconstruction, reverse mutation assay, and progressive forward accumulation, we identified 5 founder residues in the catalytic pocket of flavone 6-hydroxylase (F6H) and proposed a "3-point fixation" model to elucidate the functional innovation mechanisms of P450s in nature. According to this design principle of catalytic pocket, we further developed a de novo diffusion model (P450Diffusion) to generate artificial P450s. Ultimately, among the 17 non-natural P450s we generated, 10 designs exhibited significant F6H activity and 6 exhibited a 1.3- to 3.5-fold increase in catalytic capacity compared to the natural CYP706X1. This work not only explores the design principle of catalytic pockets of P450s, but also provides an insight into the artificial design of P450 enzymes with desired functions.